

1 **Clinical Practice Guideline:** **Rigid Total Contact Leg Cast**
 2
 3 **Date of Implementation:** **June 18, 2015**
 4
 5 **Effective Date:** **December 18, 2025**
 6
 7 **Product:** **Specialty**
 8

10 **GUIDELINES**

11 American Specialty Health – Specialty (ASH) considers the use of total contact cast (CPT®
 12 Code 29445) may be medically necessary for the following:

- 13 • Complication of diabetes, as indicated **by 1 or more of the following:**
 - 14 ○ Charcot foot (includes diabetes with neuropathic arthropathy) (A52.16,
 15 E08.610, E09.610, E10.610, E11.610, E13.610, M14.671 - M14.679,
 16 M14.69)
 - 17 ○ Plantar diabetic foot ulcer (includes atherosclerosis of native arteries and
 18 bypass graft of the leg with ulceration of heel and midfoot) (I70.234,
 19 I70.244, I70.334, I70.344, I70.434, I70.444, I70.534, I70.544, I70.634,
 20 I70.644, I70.734, I70.744, L97.401 - L97.429) that has not responded to
 21 medical management (e.g., dressings, debridement, antibiotics)

22 Total contact casting is contraindicated for the following cases:

- 23 • Ischemic conditions of the lower leg and foot (e.g., uncontrolled peripheral vascular
 24 disease)
- 25 • Active infection or osteomyelitis
- 26 • Wounds that have not been properly debrided

27 **CPT® Code and Description**

CPT® Code	CPT® Code Description
29445	Application of rigid total contact leg cast

30 **DESCRIPTION/BACKGROUND**

31 Foot disorders are a major source of morbidity and a leading cause of hospitalization for
 32 individuals with diabetes. Ulceration, infection, and Charcot foot are among the serious
 33 complications of long-standing diabetes. Diabetic foot ulcers may be classified as
 34 neuropathic, ischemic, or neuroischemic. Sensory neuropathy is the most frequent
 35 component in the causal sequence to ulceration in patients with diabetes. Charcot foot, or
 36 diabetic neuroarthropathy, is a neurologically mediated complication of diabetes, with the
 37 development modified by musculoskeletal stress, resulting in osseous fragmentation and
 38 joint subluxation with often significant morphologic changes in the architecture of the foot.

1 Complications may involve ulceration beneath bony prominences and possible amputation,
2 which is frequently associated with infection or osteomyelitis occurring near the site of
3 ulceration. Treatment should be directed by the underlying severity of the pathology.
4 Tissue damage and ulceration in the diabetic foot can result from a combination of foot
5 deformity, loss of protective sensation, and insufficient off-loading. Standard management
6 of diabetic neuropathic foot ulceration is prevention of infection, aggressive debridement
7 with removal of callus and dead tissue, application of medications or dressings to the ulcer,
8 followed by application of some form of off-loading device to offload the ulcer area with
9 concomitant management of blood glucose levels and other health problems, as
10 recommended by the American Podiatric Medical Association. Most ulcers will heal if
11 pressure is removed from the ulcer site, if the arterial circulation is sufficient, and if
12 infection is managed and treated aggressively (Boulton, 2010).

13
14 In Charcot foot, loss of pain and protective sensation render the foot susceptible to repeated
15 injury. The mainstay of management is immediate off-loading, while surgery is usually
16 reserved for chronic cases with irreversible deformities and/or joint instability.

17
18 Total contact casts (TCC) and removable walkers have been shown to be extremely
19 effective in off-loading the diabetic foot, with reported peak pressure reduction in the
20 forefoot of up to 87% compared with a control condition. This result may be achieved,
21 among other mechanisms, by limiting ankle motion and redistributing load to the device
22 itself. For these reasons, devices that extend only to the ankle, such as cast shoes and
23 forefoot offloading shoes, may be less effective in off-loading the foot than devices that
24 extend above the ankle (i.e., TCC and walkers). As there are no current means available to
25 completely diminish the effects of neuropathy, the present tenet for treating and preventing
26 deformity is based on the redistribution of pressure.

27
28 The use of a plaster cast to treat neuropathic foot deformities has come to be known as total
29 contact casting (TCC) because it employs a well-molded, minimally padded cast that
30 maintains contact with the entire plantar surface of the foot and lower leg. The cast material
31 closely fits the foot's plantar surface, increasing weight-bearing area and distributing
32 pressure more evenly across the foot. The TCC is not removable and is widely considered
33 by diabetic foot specialists as a preferred offloading method.

34
35 Much of the available evidence on the use of offloading for ulcer treatment is related to the
36 treatment of non-complicated plantar neuropathic foot ulcers. Evidence is scarce on
37 complicated and non-plantar foot ulcers. The treatment of ischemic and/or infected
38 neuropathic ulcers is more difficult than with purely neuropathic ulcers, for which good
39 offloading and debridement often suffice. One study showed that, whereas neuropathic
40 ulcers and mildly infected/ischemic ulcers can be treated effectively with casting (69–90%
41 healing rates), treatment outcome for plantar ulcers that are infected and ischemic is poor
42 (only 36%). Additional procedures such as antibiotic therapy or revascularization

1 interventions are required to achieve proper healing for these complicated ulcers
2 (Bus, 2012).

3
4 Diabetes-related lower extremity amputations are typically preceded by a foot ulcer. The
5 patient demographics related to diabetic foot ulceration are typical for patients with long-
6 standing diabetes. Risk factors for ulceration include neuropathy, peripheral arterial
7 disease, foot deformity, limited ankle range of motion, high plantar foot pressures, minor
8 trauma, previous ulceration or amputation, and visual impairment. Infection and peripheral
9 arterial disease are the main causes of amputation after an ulcer forms. The Society for
10 Vascular Surgery, American Podiatric Medical Association, and Society for Vascular
11 Medicine recommend custom therapeutic footwear for high-risk diabetes patients with
12 significant neuropathy, foot deformities, or previous amputations. In patients with plantar
13 diabetic foot ulcer, off-loading with a total contact cast or irremovable fixed ankle walking
14 boot is recommended (Hingorani et al., 2016).

15
16 Severe foot ischemia, a deep abscess, osteomyelitis, and poor skin quality are absolute
17 contraindications to the use of a non-removable total contact cast (Alexiadou et al., 2012).

18
19 **PRACTITIONER SCOPE AND TRAINING**

20 Practitioners should practice only in the areas in which they are competent based on their
21 education, training, and experience. Levels of education, experience, and proficiency may
22 vary among individual practitioners. It is ethically and legally incumbent on a practitioner
23 to determine where they have the knowledge and skills necessary to perform such services
24 and whether the services are within their scope of practice.

25
26 It is best practice for the practitioner to appropriately render services to a member only if
27 they are trained, equally skilled, and adequately competent to deliver a service compared
28 to others trained to perform the same procedure. If the service would be most competently
29 delivered by another health care practitioner who has more skill and training, it would be
30 best practice to refer the member to the more expert practitioner.

31
32 Best practice can be defined as a clinical, scientific, or professional technique, method, or
33 process that is typically evidence-based and consensus driven and is recognized by a
34 majority of professionals in a particular field as more effective at delivering a particular
35 outcome than any other practice (Joint Commission International Accreditation Standards
36 for Hospitals, 2020).

37
38 Depending on the practitioner's scope of practice, training, and experience, a member's
39 condition and/or symptoms during examination or the course of treatment may indicate the
40 need for referral to another practitioner or even emergency care. In such cases it is prudent
41 for the practitioner to refer the member for appropriate co-management (e.g., to their
42 primary care physician) or if immediate emergency care is warranted, to contact 911 as

1 appropriate. See the *Managing Medical Emergencies (CPG 159 – S)* clinical practice
 2 guideline for information.

3

4 **References**

5 Alexiadou K, Doupis J. Management of diabetic foot ulcers. *Diabetes Ther.* 2012;3(1):4

6

7 American Medical Association. (current year). *Current Procedural Terminology (CPT)*
 8 Current year (rev. ed.). Chicago: AMA

9

10 Boulton, A. J. (2010). The diabetic foot. *Medicine*, 38(12), 644-648. doi:
 11 <http://dx.doi.org/10.1016/j.mpmed.2010.08.011>

12

13 Boulton, A. J. (2014). Diabetic neuropathy and foot complications. *Handb Clin Neurol*,
 14 126, 97-107. doi: 10.1016/b978-0-444-53480-4.00008-4

15

16 Burns, J., & Begg, L. (2011). Optimizing the offloading properties of the total contact cast
 17 for plantar foot ulceration. *Diabet Med*, 28(2), 179-185. doi: 10.1111/j.1464-
 18 5491.2010.03135.x

19

20 Bus, S. A. (2012). Priorities in offloading the diabetic foot. *Diabetes Metab Res Rev*, 28
 21 Suppl 1, 54-59. doi: 10.1002/dmrr.2240

22

23 Cavanagh, P. R., & Bus, S. A. (2011). Off-loading the diabetic foot for ulcer prevention
 24 and healing. *Plast Reconstr Surg*, 127 Suppl 1, 248S-256S. doi:
 25 10.1097/PRS.0b013e3182024864

26

27 Faglia, E., Caravaggi, C., Clerici, G., Sganzeroli, A., Curci, V., Vailati, W., Sommavico,
 28 F. (2010). Effectiveness of removable walker cast versus nonremovable fiberglass off-
 29 bearing cast in the healing of diabetic plantar foot ulcer: a randomized controlled trial.
 30 *Diabetes Care*, 33(7), 1419-1423. doi: 10.2337/dc09-1708

31

32 Gouveri, E., & Papanas, N. (2011). Charcot osteoarthropathy in diabetes: A brief review
 33 with an emphasis on clinical practice. *World J Diabetes*, 2(5), 59-65. doi:
 34 10.4239/wjd.v2.i5.59

35

36 Gutekunst, D. J., Hastings, M. K., Bohnert, K. L., Strube, M. J., & Sinacore, D. R. (2011).
 37 Removable cast walker boots yield greater forefoot off-loading than total contact casts.
 38 *Clin Biomech (Bristol, Avon)*, 26(6), 649-654. doi: 10.1016/j.clinbiomech.2011.03.010

39

40 Healy, A., Naemi, R., & Chockalingam, N. (2014). The effectiveness of footwear and other
 41 removable off-loading devices in the treatment of diabetic foot ulcers: a systematic
 42 review. *Curr Diabetes Rev*, 10(4), 215-230

1 Hingorani, A., LaMuraglia, G. M., Henke, P., Meissner, M. H., Loretz, L., Zinszer, K. M.,
 2 & Murad, M. H. (2016). The management of diabetic foot: a clinical practice guideline
 3 by the Society for Vascular Surgery in collaboration with the American Podiatric
 4 Medical Association and the Society for Vascular Medicine. *Journal of vascular*
 5 *surgery*, 63(2), 3S-21S

6

7 Joint Commission International. (2020). Joint Commission International Accreditation
 8 Standards for Hospitals (7th ed.): Joint Commission Resources

9

10 Messenger G, Masoetsa R, Hussain I. A Narrative Review of the Benefits and Risks of
 11 Total Contact Casts in the Management of Diabetic Foot Ulcers. *J Am Coll Clin Wound*
 12 *Spec.* 2018;9(1-3):19-23. Published 2018 Jun 7. doi:10.1016/j.jccw.2018.05.002

13

14 Morona, J. K., Buckley, E. S., Jones, S., Reddin, E. A., & Merlin, T. L. (2013). Comparison
 15 of the clinical effectiveness of different off-loading devices for the treatment of
 16 neuropathic foot ulcers in patients with diabetes: a systematic review and meta-
 17 analysis. *Diabetes/Metabolism Research & Reviews*, 29(3), 183-193. doi:
 18 10.1002/dmrr.2386

19

20 Perrin, B. M., Gardner, M. J., Suhaimi, A., & Murphy, D. (2010). Charcot osteoarthropathy
 21 of the foot. *Aust Fam Physician*, 39(3), 117-119

22

23 Piaggesi, A., Macchiarini, S., Rizzo, L., Palumbo, F., Tedeschi, A., Nobili, L. A., Del Prato,
 24 S. (2007). An off-the-shelf instant contact casting device for the management of
 25 diabetic foot ulcers: a randomized prospective trial versus traditional fiberglass cast.
 26 *Diabetes Care*, 30(3), 586-590

27

28 Sponer, P., Kucera, T., Brtkova, J., & Srot, J. (2013). The management of Charcot midfoot
 29 deformities in diabetic patients. *Acta Medica (Hradec Kralove)*, 56(1), 3-8

30

31 Steed, D. L., Attinger, C., Colaizzi, T., Crossland, M., Franz, M., Harkless, L., Wiersma-
 32 Bryant, L. (2006). Guidelines for the treatment of diabetic ulcers. *Wound Repair Regen*,
 33 14(6), 680-692. doi: 10.1111/j.1524-475X.2006.00176.x

34

35 Vuorisalo, S., Venermo, M., & Lepantalo, M. (2009). Treatment of diabetic foot ulcers.
 36 *J Cardiovasc Surg (Torino)*, 50(3), 275-291

37

38 Whitelaw, S. (2012). The total contact cast: controversy in offloading the diabetic foot.
 39 *British Journal of Community Nursing*, S16-20