

|   |                                     |                          |
|---|-------------------------------------|--------------------------|
| 1 | <b>Clinical Practice Guideline:</b> | <b>Wound Care</b>        |
| 2 | <b>Date of Implementation:</b>      | <b>October 18, 2012</b>  |
| 3 | <b>Effective Date:</b>              | <b>December 18, 2025</b> |
| 4 | <b>Product:</b>                     | <b>Specialty</b>         |
| 5 |                                     |                          |
| 6 |                                     |                          |
| 7 |                                     |                          |
| 8 |                                     |                          |

---

## 9 Table of Contents

10 *(CTRL+Click on Section Heading to Follow Link)*

|    |                                                                        |    |
|----|------------------------------------------------------------------------|----|
| 12 | GUIDELINES .....                                                       | 2  |
| 13 | Wound Debridement .....                                                | 2  |
| 14 | Evaluation/Re-assessment .....                                         | 4  |
| 15 | Wound Care Modalities.....                                             | 5  |
| 16 | Dressing Use and Change.....                                           | 8  |
| 17 | Surgical Debridement.....                                              | 9  |
| 18 | Debridement, Subcutaneous Tissue, Muscle and/or Fascia .....           | 9  |
| 19 | Debridement, Bone.....                                                 | 13 |
| 20 | Powered Negative Pressure Wound Therapy / Vacuum-Assisted Closure..... | 16 |
| 21 | Hyperbaric Oxygen (HBO) .....                                          | 19 |
| 22 | Skin Substitutes and Soft Tissue Grafts.....                           | 20 |
| 23 | DESCRIPTION/BACKGROUND .....                                           | 27 |
| 24 | Wound Types .....                                                      | 27 |
| 25 | Osteomyelitis.....                                                     | 30 |
| 26 | Wound Healing.....                                                     | 30 |
| 27 | Choice of Dressing .....                                               | 31 |
| 28 | EVIDENCE REVIEW.....                                                   | 32 |
| 29 | Electrical Stimulation (ES).....                                       | 32 |
| 30 | Electromagnetic Therapy (ET)/Diathermy .....                           | 35 |
| 31 | Ultraviolet (UV) Light.....                                            | 35 |
| 32 | Non-Contact Ultrasound.....                                            | 36 |
| 33 | Ultrasound .....                                                       | 37 |
| 34 | Low-Level Laser Therapy (LLLT).....                                    | 38 |
| 35 | Negative Pressure Wound Therapy (NPWT) .....                           | 41 |
| 36 | Systemic Hyperbaric Oxygen Therapy (HBOT) .....                        | 48 |

|   |                                                          |    |
|---|----------------------------------------------------------|----|
| 1 | Undersea and Hyperbaric Medical Society Guidelines ..... | 50 |
| 2 | Wound Dressings.....                                     | 52 |
| 3 | PRACTITIONER SCOPE AND TRAINING .....                    | 54 |
| 4 | References .....                                         | 54 |

5

## 6 GUIDELINES

### 7 Wound Debridement

8 Wound care is defined as the care of wounds that are refractory to healing or have  
 9 complicated healing cycles either because of the nature of the wound itself or because of  
 10 complicating metabolic and/or physiological factors. This definition excludes management  
 11 of acute wounds, the care of wounds that normally heal by primary intention such as clean,  
 12 incised traumatic wounds, surgical wounds that are closed primarily and other  
 13 postoperative wound care not separately payable during the surgical global period.

14

15 American Specialty Health – Specialty (ASH) would expect that wound care may be  
 16 medically necessary for the following types of wounds as indicated by appropriate  
 17 documentation in support of medical necessity:

18

- Second- and third-degree burn wounds
- Surgical wounds that must be left open to heal by secondary intention
- Infected open wounds induced by trauma or surgery
- Wounds associated with complicating autoimmune, metabolic, vascular or pressure  
 21 factors
- Open or closed wounds complicated by necrotic tissue and eschar

23

25 Documentation to support selective debridement (CPT® Codes 97597 and 97598) must  
 26 include the following to support medical necessity:

27

- Clear description of instruments used for debridement (e.g., high-pressure waterjet,  
 28 scissors, scalpel, forceps)
- Thorough objective assessment of the wound including drainage, color, texture,  
 30 temperature, vascularity, condition of surrounding tissue, and size of the area to be  
 31 targeted for debridement
- Description of adjunctive measures to support debridement procedures, if indicated  
 33 (e.g., management of pressure (e.g., off-loading, padding, appropriate footwear),  
 34 infection, vascular insufficiency, metabolic disorder, and/or nutritional deficiency)
- Documentation of complexity of skills required by treating practitioner indicated  
 35 in medical record

36

1 Documentation to support non-selective debridement (CPT® 97602) must include the  
2 following to support medical necessity:

- 3 • Type of technique utilized (i.e., wet-to-moist, enzymatic, abrasion)
- 4 • Thorough objective assessment of the wound including drainage, color, texture,  
5 temperature, vascularity, condition of surrounding tissue, and size of the area to be  
6 targeted for debridement
- 7 • Description of adjunctive measures to support debridement procedures, if indicated  
8 (i.e., management of pressure (i.e., off-loading, padding, appropriate footwear),  
9 infection, vascular insufficiency, metabolic disorder, and/or nutritional deficiency)
- 10 • Documentation of complexity of skills required by treating practitioner indicated  
11 in medical record

12  
13 If there is no documented evidence (e.g., objective measurements) of ongoing significant  
14 benefit, then the medical record documentation must provide other clear evidence of  
15 medical necessity for treatments. Physicians and qualified non-physician practitioners,  
16 licensed physical therapists and licensed occupational therapists acting within their scope  
17 of practice and licensure may provide debridement services and use the Physical Medicine  
18 and Rehabilitation codes including CPT® 97597, 97598 and 97602. Removal of non-tissue  
19 integrated fibrin exudates, crusts, biofilms, or other materials from a wound without  
20 removal of tissue does not meet the definition of any debridement code and may not be  
21 reported as such.

22  
23 Debridement of the wound(s) when indicated must be performed discriminately and at  
24 appropriate intervals. Prolonged, repetitive debridement services require adequate  
25 documentation of complicating circumstances that reasonably necessitated additional  
26 services. ASH expects that with appropriate care, wound volume or surface dimension  
27 should decrease by at least 10 percent per month or wounds will demonstrate margin  
28 advancement of no less than 1 mm/week. ASH expects the wound-care treatment plan to  
29 be modified in the event that appropriate healing is not achieved.

30  
31 Medically necessary chronic wound care must be performed in accordance with accepted  
32 standards for medical and surgical treatment of wounds. Eventual wound closure with or  
33 without grafts, skin replacements or other surgery (such as amputation, wound excision,  
34 etc.) should be the goal of most chronic wound care. Isolated wound care, when other  
35 adjunctive measures are indicated, is not considered to be medically necessary. With  
36 appropriate management, it is expected that, in most cases, a wound will reach a state at  
37 which its care should be performed primarily by the patient and/or the patient's caregiver  
38 with periodic physician assessment and supervision. Wound care that can be performed by  
39 the patient or the patient's caregiver will be considered to be maintenance care and not  
40 medically necessary.

1 ASH considers CPT® code 17250 (Chemical cauterization of granulation tissue (proud  
 2 flesh, sinus, or fistula)) an integral service as part of a health care provider's medical or  
 3 surgical care and not separately billable with debridement CPT® codes in the table below.  
 4

5 **Evaluation/Re-assessment**

6 Other than an initial evaluation, wound assessment is an integral part of all wound care  
 7 service codes and, as such, these assessments are not separately billable.

- 8 Initial wound assessments that are medically necessary may be reimbursable as a  
 9 separately identifiable Evaluation and Management (E/M) service or i.e., physical  
 10 therapy evaluation CPT® 97161-97163.
- 11 Re-assessments/re-evaluations of a wound (which may be completed with a  
 12 dressing change) are considered to be a non-covered routine service. An exception  
 13 would require documentation clearly supporting that there had been a significant  
 14 improvement, decline, or change in the patient's condition or functional status that  
 15 was not anticipated in the plan of care and required further evaluation.

16 **CPT® Codes and Descriptions**

| CPT® Code | CPT® Code Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 97597     | Debridement (e.g., high pressure waterjet with/without suction, sharp selective debridement with scissors, scalpel and forceps), open wound, (e.g., fibrin, devitalized epidermis and/or dermis exudate, debris, biofilm), including topical application(s), wound assessment, use of a whirlpool, when performed and instructions (s) for ongoing care, per session, total wound(s) surface area; first 20 sq cm or less                                                                               |
| 97598     | Debridement (e.g., high pressure waterjet with/without suction, sharp selective debridement with scissors, scalpel and forceps), open wound, (e.g., fibrin, devitalized epidermis and/or dermis, exudate, debris, biofilm), including topical application(s), wound assessment, use of a whirlpool, when performed and instruction(s) for ongoing care, per session, total wound(s) surface area; each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure) |
| 97602     | Removal of devitalized tissue from wound(s), non-selective debridement, without anesthesia (e.g., wet-to-moist dressings, enzymatic, abrasion, larval therapy), including topical application(s), wound assessment, and instruction(s) for ongoing care, per session                                                                                                                                                                                                                                    |
| 17250     | Chemical cauterization of granulation tissue (i.e. proud flesh)                                                                                                                                                                                                                                                                                                                                                                                                                                         |

1      **Wound Care Modalities**

2      **A. Whirlpool**

- 3      • If the patient uses whirlpool for treatment of a wound prior to receiving  
4      selective debridement services for the wound during the same visit, then the  
5      whirlpool is not separately reimbursable and should not be billed with  
6      modifier 59 unless two separate wounds are treated with different  
7      modalities.
- 8      • If the patient uses whirlpool for treatment of a wound prior to receiving non-  
9      selective debridement services for the wound during the same visit, then the  
10     whirlpool is separately reimbursable and may be billed with modifier 59.
- 11     • Whirlpool can also be completed during the same visit for non-wound care-  
12     related purposes. It is appropriate to separately bill CPT® 97022 when the  
13     whirlpool is used for other purposes not involving wound care, e.g.,  
14     facilitation of range of motion activities.

15     **B. Electrical Stimulation Therapy**

16     Care of chronic Stage III and Stage IV pressure ulcers, arterial ulcers, diabetic  
17     ulcers and/or venous stasis ulcers through use of Electrical Stimulation (ES)  
18     (electrical current via electrodes placed directly on the skin in close proximity to  
19     the ulcer; CPT®/HCPCS codes G0281, 97014, 97032) may be covered as  
20     medically necessary when the following criteria are met:

- 21     • Patient is a Medicare beneficiary; AND
- 22     • Failure to demonstrate measurable signs of healing (e.g., signs of  
23       epithelialization and reduction in ulcer size) with a 30-day trial of  
24       conventional wound management, including optimization of nutritional  
25       status, moist dressings, and debridement. ES would not be medically  
26       necessary as an initial treatment modality.

27     Other considerations:

- 28     • If after 30 days of ES therapy no measurable signs of healing (e.g., decrease  
29       in wound size/surface or volume, decrease in amount of exudates and  
30       decrease in amount of necrotic tissue) are demonstrated, ES should be  
31       discontinued.
- 32     • ES treatment sessions are not medically necessary beyond one hour.  
33       Prolonged treatments using ES do not provide additional benefit.
- 34     • ES also must be discontinued when the wound demonstrates a 100 percent  
35       epithelialized wound bed.
- 36     • ASH considers ES therapy for chronic ulcers unproven when these criteria  
37       are not met (e.g., not a Medicare beneficiary).

1           • Additionally, comprehensive wound treatments must include optimization  
2           of nutritional status, debridement to remove devitalized tissue, maintenance  
3           of a clean, moist bed of granulation tissue with appropriate moist dressings,  
4           and necessary care to resolve any infection that may be present. Specific  
5           wound care based on type of wound includes frequent repositioning of a  
6           member with pressure ulcers (usually every 2 hours); off-loading of  
7           pressure and good glucose control for diabetic ulcers; establishment of  
8           adequate circulation for arterial ulcers and the use of a compression system  
9           for members with venous ulcers.

10           **C. Electromagnetic Therapy**

11           Care of chronic Stage III and Stage IV pressure ulcers, arterial ulcers, diabetic  
12           ulcers and/or venous stasis ulcers through use of Electromagnetic (EM) therapy  
13           (pulsed magnetic field to induce current) may be covered as medically necessary  
14           when the following criteria are met:

15           • Patient is a Medicare beneficiary; AND  
16           • Failure to demonstrate measurable signs of healing (e.g., signs of  
17           epithelialization and reduction in ulcer size) with a 30-day trial of  
18           conventional wound management, including optimization of nutritional  
19           status, moist dressings, and debridement. EM would not be medically  
20           necessary as an initial treatment modality.

21           Other considerations:

22           • If after 30 days of EM therapy no measurable signs of healing (e.g., decrease  
23           in wound size/surface or volume, decrease in amount of exudates and  
24           decrease in amount of necrotic tissue) are demonstrated, EM should be  
25           discontinued.  
26           • EM treatment sessions are not medically necessary beyond one hour.  
27           Prolonged treatments using EM do not provide additional benefit.  
28           • EM also must be discontinued when the wound demonstrates a 100 percent  
29           epithelialized wound bed.  
30           • ASH considers EM therapy for chronic ulcers unproven when these criteria  
31           are not met (e.g., not a Medicare beneficiary).  
32           • Additionally, comprehensive wound treatments must include optimization  
33           of nutritional status, debridement to remove devitalized tissue, maintenance  
34           of a clean, moist bed of granulation tissue with appropriate moist dressings,  
35           and necessary care to resolve any infection that may be present. Specific  
36           wound care based on type of wound includes frequent repositioning of a  
37           member with pressure ulcers (usually every 2 hours); off-loading of  
38           pressure and good glucose control for diabetic ulcers; establishment of  
39           adequate circulation for arterial ulcers and the use of a compression system  
40           for members with venous ulcers.

1           **D. Ultraviolet (UV) Light**

2           ASH considers the treatment of decubitus ulcers with CPT® code 97028 – UV light  
 3           NOT medically necessary, except in the following circumstance where it may be  
 4           reasonable and necessary:

- 5           • For Medicare beneficiaries requiring the application of a drying heat, such  
           6           as for the treatment of severe psoriasis where there is limited range of  
           7           motion.
  - 8           ○ Supportive Documentation Requirements (required at least every 10  
           9           visits)
    - 10           ■ Area(s) being treated
    - 11           ■ Objective clinical findings/measurements to support the  
           12           need for ultraviolet
    - 13           ■ Minimal erythema dosage

14           **E. Low-Frequency, Non-Contact, Non-Thermal Ultrasound**

15           CPT® code 97610 [low frequency, non-contact, non-thermal ultrasound, including  
 16           topical application(s) when performed, wound assessment, and instruction(s) for  
 17           ongoing care, per day] describes a system that uses continuous low-frequency  
 18           ultrasonic energy to produce and propel a mist of liquid and deliver continuous low-  
 19           frequency ultrasound to the wound bed. This modality is often referred to as ‘MIST  
 20           Therapy.’

21           Low-frequency, non-contact, non-thermal ultrasound (MIST Therapy) may be  
 22           covered as medically necessary wound therapy for Medicare beneficiaries for any  
 23           of the following clinical conditions:

- 24           • Wounds, burns and ulcers meeting ASH medical necessity criteria for  
           25           debridement, but which are too painful for sharp or excisional debridement  
           26           and described in the medical record
- 27           • Wounds, burns and ulcers meeting ASH medical necessity criteria for  
           28           debridement but with documented contraindications to sharp or excisional  
           29           debridement
- 30           • Wounds, burns and ulcers meeting ASH medical necessity criteria for  
           31           debridement but with documented evidence of no signs of improvement  
           32           after 30 days of standard wound care

33           Other considerations:

- 34           • Low-frequency, non-contact, non-thermal ultrasound (MIST Therapy) must  
           35           be provided 2 to 3 times per week to be considered medically necessary
  - 36           ○ The length of individual treatments will vary per wound size

- 1     • Observable, documented improvements in the wound(s) should be evident  
2        after 6 treatments. Improvements include documented reduction in pain,  
3        necrotic tissue, or wound size or improved granulation tissue  
4           ○ Continuing treatments are not covered for wounds demonstrating no  
5            improvement after 6 treatments
- 6     • MIST therapy is considered unproven and not a covered service for non-  
7        Medicare patients

8

## 9     **F. Ultrasound**

10    ASH considers care of chronic wounds through use of therapeutic Ultrasound;  
11    CPT® code 97035) medically necessary based on the following criteria:

- 12     • Failure to demonstrate measurable signs of healing (e.g., signs of  
13        epithelialization and reduction in ulcer size) with a 30-day trial of  
14        conventional wound management, including optimization of nutritional  
15        status, moist dressings, and debridement. Ultrasound would not be  
16        medically necessary as an initial treatment modality.

17

## 18     **G. Low Level Laser Therapy**

19    ASH considers Low Level Laser Therapy unproven for treatment of chronic  
20    wounds. There is insufficient evidence to support its use.

21

### **Dressing Use and Change**

22    Application of wound dressing continues to be the standard of care for wound treatment;  
23    however, the literature is inconclusive as it relates to standardized topical preparations and  
24    types of dressings. Documentation must support the use of the type of dressing for bandage.  
25    Dressing size must be based on and appropriate to the size of the wound. For wound covers,  
26    the pad size is usually about 2 in. greater than the dimensions of the wound. For example,  
27    a 5 cm x 5 cm (2 in. x 2 in.) wound requires a 4 in. x 4 in. pad size.

28

29    The quantity and type of dressings dispensed at any one time must consider the status of  
30    the wound(s), the likelihood of change, and the recent use of dressings. Dressing needs  
31    may change frequently (e.g., weekly) in the early phases of wound treatment and/or with  
32    heavily draining wounds. Suppliers are also expected to have a mechanism for determining  
33    the quantity of dressings that the patient is using and to adjust their provision of dressings  
34    accordingly. No more than a one month's supply of dressings may be provided at one time  
35    unless there is documentation to support the necessity of greater quantities in the home  
36    setting in an individual case. An even smaller quantity may be appropriate in the situations  
37    described above.

38

39    Surgical dressings must be tailored to the specific needs of an individual patient. When  
40    surgical dressings are provided in kits, only those components of the kit that meet the  
41    definition of a surgical dressing, that are ordered by the physician, and that are medically

1 necessary are covered. Most compression bandages are reusable. Usual frequency of  
 2 replacement would be no more than one per week unless they are part of a multi-layer  
 3 compression bandage system.

4  
 5 Multi-layered, sustained, graduated, high compression bandage systems are used primarily  
 6 to treat lymphedema and venous or stasis leg ulcers. Several graduated, high-compression  
 7 bandage systems products have been developed, including Profore®, Dyna-Flex®,  
 8 Surepress®, Setopress®, and other similar product systems.

| HCPCS/ CPT® Code | HCPCS/ CPT® Code Description                                                                                                |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| A6448            | Light compression bandage, elastic, knitted/woven, width less than 3 inches, per yard                                       |
| A6449            | Light compression bandage, elastic, knitted/woven, width greater than or equal to 3 inches and less than 5 inches, per yard |
| A6450            | Light compression bandage, elastic, knitted/woven, width greater than or equal to 5 inches, per yard                        |
| 29581            | Application of multi-layer compression system; leg (below knee), including ankle and foot                                   |

10  
 11 A dressing change may not be billed as either a debridement or other wound care service  
 12 under any circumstance (e.g., CPT® 97597, 97598, 97602).

13     • Medicare does not separately reimburse for dressing changes or patient/caregiver  
 14     training in the care of the wound. These services are reimbursed as part of a billable  
 15     E/M or procedure code that, commonly but not necessarily, occurs on the same date  
 16     of service as the dressing change. If not included in another service, the costs  
 17     associated with dressing changes may be reported as not separately payable.  
 18     • All topical applications (e.g., medications, ointments, and dressings) are included  
 19     in the payment for the procedure codes.

20  
 21 **Surgical Debridement**

22 **Debridement, Subcutaneous Tissue, Muscle and/or Fascia**

23 ASH considers services consisting of CPT® Codes 11042, 11043, 11045, and 11046 to be  
 24 medically necessary for the debridement of muscle and/or subcutaneous tissue upon  
 25 meeting **ALL of** the following criteria (1, 2, and 3) below:

26  
 27 1. Conditions that may require debridement include at least one of the following:

| ICD-10 Code                                                                              | ICD-10 Code Description                                                                                  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| I70.232, I70.242                                                                         | Atherosclerosis of native arteries of leg with ulceration of calf                                        |
| I70.233, I70.243                                                                         | Atherosclerosis of native arteries of leg with ulceration of ankle                                       |
| I70.234, I70.244                                                                         | Atherosclerosis of native arteries of leg with ulceration of heel and midfoot                            |
| I70.235, I70.245                                                                         | Atherosclerosis of native arteries of leg with ulceration of other part of foot                          |
| I70.238 - I70.239, I70.248 - I70.249                                                     | Atherosclerosis of native arteries of leg with ulceration of other part of lower leg or unspecified site |
| I70.25                                                                                   | Atherosclerosis of native arteries of other extremities with ulceration                                  |
| I70.332, I70.342, I70.432, I70.442, I70.532, I70.542, I70.632, I70.642, I70.732, I70.742 | Atherosclerosis of bypass graft(s) of the leg with ulceration of calf                                    |
| I70.333, I70.343, I70.433, I70.443, I70.533, I70.543, I70.633, I70.643, I70.733, I70.743 | Atherosclerosis of bypass graft(s) of the leg with ulceration of ankle                                   |
| I70.334, I70.344, I70.434, I70.444, I70.534, I70.544, I70.634, I70.644, I70.734, I70.744 | Atherosclerosis of bypass graft(s) of the leg with ulceration of heel and midfoot                        |
| I70.335, I70.345, I70.435, I70.445, I70.535, I70.545, I70.635, I70.645, I70.735, I70.745 | Atherosclerosis of bypass graft(s) of the leg with ulceration of other part of foot                      |

| ICD-10 Code                                                                                                                                                                                                             | ICD-10 Code Description                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| I70.338 - I70.339,<br>I70.348 - I70.349,<br>I70.438 - I70.439,<br>I70.448 - I70.449,<br>I70.538 - I70.539,<br>I70.548 - I70.549,<br>I70.638 - I70.639,<br>I70.648 - I70.649,<br>I70.738 - I70.739,<br>I70.748 - I70.749 | Atherosclerosis of bypass graft(s) of the leg with ulceration of other part of lower leg or unspecified site |
| I70.35, I70.45,<br>I70.55, I70.65, I70.75                                                                                                                                                                               | Atherosclerosis of bypass graft(s) of other extremity with ulceration                                        |
| L02.415 - L02.419,<br>L03.115 - L03.119,<br>L03.125 - L03.129                                                                                                                                                           | Cutaneous abscess, cellulitis, and acute lymphangitis of lower and unspecified part of limb                  |
| L02.611 - L02.619                                                                                                                                                                                                       | Cutaneous abscess of foot                                                                                    |
| L08.81, L08.89                                                                                                                                                                                                          | Pyoderma vegetans - Other specified local infections of the skin and subcutaneous tissue                     |
| L08.9                                                                                                                                                                                                                   | Local infection of the skin and subcutaneous tissue, unspecified                                             |
| L89.200, L89.210,<br>L89.220, L89.300,<br>L89.310, L89.320,<br>L89.500, L89.510,<br>L89.520, L89.600,<br>L89.610, L89.620,<br>L89.890, L89.95                                                                           | Pressure ulcer of hip, buttock, ankle, heel, other site, and unspecified site; unstageable                   |
| L89.204, L89.214,<br>L89.224, L89.304,<br>L89.314, L89.324,<br>L89.504, L89.514,<br>L89.524, L89.604,<br>L89.614, L89.624,<br>L89.894, L89.94                                                                           | Pressure ulcer of hip, buttock, ankle, heel, other site, and unspecified site; stage 4                       |

| ICD-10 Code                                                                                                                 | ICD-10 Code Description                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| L89.209, L89.219, L89.229, L89.309, L89.319, L89.329, L89.509, L89.519, L89.529, L89.609, L89.619, L89.629, L89.899, L89.90 | Pressure ulcer of hip, buttock, ankle, heel, other site, and unspecified site; unspecified stage |
| L89.500 - L89.529                                                                                                           | Pressure ulcer of ankle                                                                          |
| L89.600 - L89.629                                                                                                           | Pressure ulcer of heel                                                                           |
| L89.890 - L89.899                                                                                                           | Pressure ulcer of other site                                                                     |
| L89.90 - L89.95                                                                                                             | Pressure ulcer of unspecified site                                                               |
| L97.201 - L97.229                                                                                                           | Non-pressure chronic ulcer of calf                                                               |
| L97.301 - L97.329                                                                                                           | Non-pressure chronic ulcer of ankle                                                              |
| L97.401 - L97.429                                                                                                           | Non-pressure chronic ulcer of heel and midfoot                                                   |
| L97.501 - L97.529                                                                                                           | Non-pressure chronic ulcer of other part of foot                                                 |
| L97.801 - L97.829                                                                                                           | Non-pressure chronic ulcer of other part of lower leg                                            |
| L97.901 - L97.929                                                                                                           | Non-pressure chronic ulcer of unspecified part of lower leg                                      |
| L98.411 - L98.419                                                                                                           | Non-pressure chronic ulcer of buttock                                                            |
| L98.491 - L98.499                                                                                                           | Non-pressure chronic ulcer of skin of other sites                                                |
| M72.6                                                                                                                       | Necrotizing fasciitis                                                                            |

1

2

3

4

5

6

7

8

9

10

11

12

2. All significant relevant comorbid conditions are addressed that could interfere with optimal wound healing.
3. If there is no necrotic, devitalized, fibrotic, or other tissue or foreign matter present that would interfere with wound healing, the debridement service is not medically necessary. The presence or absence of such tissue or foreign matter must be documented in the medical record.

The number of debridement services required is variable and depends on numerous intrinsic and extrinsic factors. Debridement of the wound(s) when indicated must be performed discriminately and at appropriate intervals. ASH expects fewer than 5 debridement sessions involving removal of muscle to be required for management of most

1       wounds. Prolonged, repetitive debridement services require adequate documentation of  
 2       complicating circumstances that reasonably necessitated additional services.

3  
 4       Local infiltration, metacarpal/digital block or topical anesthesia are included in the  
 5       reimbursement for debridement services and are not separately payable. Anesthesia  
 6       administered by or incident to the provider performing the debridement procedure is not  
 7       separately payable.

8  
 9       **Exclusion criteria:** CPT® codes 11042, 11043, 11045, and 11046 are **NOT** appropriate  
 10      for the following conditions:

- 11       • Skin breakdown under a dorsal corn is not considered an ulcer and generally does  
 12        not require debridement. These lesions typically heal without significant surgical  
 13        intervention beyond removal of the corn and shoe modification.
- 14       • Removing a collar of callus (hyperkeratotic tissue) around an ulcer is not  
 15        debridement of skin or necrotic tissue.

16  
 17      It is expected that, with appropriate care, and no extenuating medical or surgical  
 18      complications or setbacks, wound volume or surface dimension should decrease over time.  
 19      It is also expected the wound care treatment plan is modified in the event that appropriate  
 20      healing is not achieved. It is expected that co-morbid conditions that may interfere with  
 21      normal wound healing have been addressed; the etiology of the wound has been determined  
 22      and addressed as well as addressing patient compliance issues. This may include, for  
 23      example, evaluation of pulses, ABI and/or possible consultation with a vascular surgeon.

24  
 25      **Debridement, Bone**  
 26      ASH considers services consisting of CPT® Codes 11044 and 11047 to be medically  
 27      necessary for the debridement of bone upon meeting **ALL of** the following criteria (1, 2,  
 28      and 3) below:

29       1. Conditions that may require debridement include at least one of the following:

| ICD-10 Code                                                   | ICD-10 Code Description                                                       |
|---------------------------------------------------------------|-------------------------------------------------------------------------------|
| A18.03                                                        | Tuberculosis of other bones                                                   |
| M86.00, M86.10, M86.20                                        | Acute hematogenous, other acute, and subacute osteomyelitis; unspecified site |
| M86.061 - M86.069,<br>M86.161 - M86.169,<br>M86.261 - M86.269 | Acute hematogenous, other acute, and subacute osteomyelitis; tibia and fibula |
| M86.071 - M86.079,<br>M86.171 - M86.179,<br>M86.271 - M86.279 | Acute hematogenous, other acute, and subacute osteomyelitis; ankle and foot   |

| ICD-10 Code                                                                 | ICD-10 Code Description                                                                                                |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| M86.08, M86.18, M86.28                                                      | Acute hematogenous, other acute, and subacute osteomyelitis; other site                                                |
| M86.09, M86.19, M86.29                                                      | Acute hematogenous, other acute, and subacute osteomyelitis; multiple sites                                            |
| M86.30, M86.40, M86.50, M86.60                                              | Chronic multifocal, with draining sinus, other chronic hematogenous, and other chronic osteomyelitis; unspecified site |
| M86.361 - M86.369, M86.461 - M86.469, M86.561 - M86.569, M86.661 - M86.669  | Chronic multifocal, with draining sinus, other chronic hematogenous, and other chronic osteomyelitis; tibia and fibula |
| M86.371 - M86.379, M86.471 - M86.479, M86.571 - M86.579, M86.671 - M86.679, | Chronic multifocal, with draining sinus, other chronic hematogenous, and other chronic osteomyelitis; ankle and foot   |
| M86.38, M86.48, M86.58, M86.68                                              | Chronic multifocal, with draining sinus, other chronic hematogenous, and other chronic osteomyelitis; other site       |
| M86.39, M86.49, M86.59, M86.69                                              | Chronic multifocal, with draining sinus, other chronic hematogenous, and other chronic osteomyelitis; multiple sites   |
| M86.8X0, M86.8X6, M86.8X7, M86.8X8, M86.8X9                                 | Other osteomyelitis; unspecified sites, lower leg, ankle and foot, other site, and multiple sites                      |
| M86.9                                                                       | Osteomyelitis, unspecified                                                                                             |
| M90.861 - M90.869                                                           | Osteopathy in diseases classified elsewhere, lower leg                                                                 |
| M90.871 - M90.879                                                           | Osteopathy in diseases classified elsewhere, ankle and foot                                                            |
| M90.88                                                                      | Osteopathy in diseases classified elsewhere, other site                                                                |
| M90.89                                                                      | Osteopathy in diseases classified elsewhere, multiple sites                                                            |

1

2. All significant relevant comorbid conditions are addressed that could interfere with  
 3 optimal wound healing.  
 4. If there is no necrotic, devitalized, fibrotic, or other tissue or foreign matter present  
 5 that would interfere with wound healing, the debridement service is not medically  
 6 necessary. The presence or absence of such tissue or foreign matter must be  
 7 documented in the medical record.

1 The number of debridement services required is variable and depends on numerous  
 2 intrinsic and extrinsic factors. Debridement of the wound(s) when indicated must be  
 3 performed discriminately and at appropriate intervals. ASH expects fewer than five  
 4 debridement sessions involving removal of bone to be required for management of most  
 5 wounds. Prolonged, repetitive debridement services require adequate documentation of  
 6 complicating circumstances that reasonably necessitated additional services.

7  
 8 Local infiltration, metacarpal/digital block or topical anesthesia are included in the  
 9 reimbursement for debridement services and are not separately payable. Anesthesia  
 10 administered by or incident to the provider performing the debridement procedure is not  
 11 separately payable.

12  
 13 **Exclusion criteria:** CPT® codes 11044 and 11047 are **NOT** appropriate for the following  
 14 conditions:

- 15 Skin breakdown under a dorsal corn is not considered an ulcer and generally does  
 16 not require debridement. These lesions typically heal without significant surgical  
 17 intervention beyond removal of the corn and shoe modification.
- 18 • Removing a collar of callus (hyperkeratotic tissue) around an ulcer is not  
 19 debridement of skin or necrotic tissue.

20  
 21 Debridement for osteomyelitis is covered for chronic osteomyelitis and osteomyelitis  
 22 associated with an open wound. It is expected that, with appropriate care, and no  
 23 extenuating medical or surgical complications or setbacks, wound volume or surface  
 24 dimension should decrease over time. It is also expected the wound care treatment plan is  
 25 modified in the event that appropriate healing is not achieved. It is expected that the  
 26 etiology of the wound has been determined and addressed as well as addressing patient  
 27 compliance issues. This may include, for example, evaluation of pulses, ABI and/or  
 28 possible consultation with a vascular surgeon.

29  
 30 ASH considers CPT® code 17250 (Chemical cauterization of granulation tissue (proud  
 31 flesh, sinus, or fistula)) an integral service as part of a health care provider's medical or  
 32 surgical care and not separately billable with surgical debridement CPT® codes listed in  
 33 the table below.

34  
 35 **CPT® Codes and Descriptions**

| CPT® Code | CPT® Code Description                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------|
| 11042     | Debridement, subcutaneous tissue (includes epidermis and dermis, if performed); first 20 sq cm or less |

| CPT® Code | CPT® Code Description                                                                                                                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11043     | Debridement, muscle and/or fascia (includes epidermis, dermis, and subcutaneous tissue, if performed); first 20 sq cm or less                                                                                  |
| 11044     | Debridement, bone (includes epidermis, dermis, subcutaneous tissue, muscle and/or fascia, if performed); first 20 sq cm or less                                                                                |
| 11045     | Debridement, subcutaneous tissue (includes epidermis and dermis, if performed); each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure)                          |
| 11046     | Debridement, muscle and/or fascia (includes epidermis, dermis, and subcutaneous tissue, if performed); each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure)   |
| 11047     | Debridement, bone (includes epidermis, dermis, subcutaneous tissue, muscle and/or fascia, if performed); each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure) |
| 17250     | Chemical cauterization of granulation tissue (i.e. proud flesh)                                                                                                                                                |

1

2 **Powered Negative Pressure Wound Therapy / Vacuum-Assisted Closure**

3 ASH considers powered negative pressure wound therapy (NPWT)/vacuum-assisted  
 4 closure (VAC) CPT® code 97605, 97606) (HCPCS code A6550, E2402) medically  
 5 necessary upon meeting **ALL of** the criteria (1, 2, 3, and 4) below:

- 6 1. Individual is 12.0 years of age or older; and
- 7 2. A complete wound care program, which meets **ALL of** the requirements below, has  
 8 been tried:
  - 9     ○ Documentation in the individual's medical record of evaluation, care, and  
 10     wound measurements by a licensed medical professional; and
  - 11     ○ Application of dressings to maintain a moist environment; and
  - 12     ○ Debridement of necrotic tissue if present; and
  - 13     ○ Evaluation of and provision for adequate nutritional status; and
  - 14     ○ Underlying medical conditions (e.g., diabetes, venous insufficiency) are  
 15     being appropriately managed; and

1       3. An eligible condition is documented (individual must meet **one or more** of the  
2       following):

3       a. Stage III or IV pressure ulcers (see key terms below) at initiation of vacuum  
4       assisted wound therapy, in individuals who meet **ALL of** the following:

5           i. The individual has been appropriately turned and positioned; and  
6           ii. The individual has used a group 2 or 3 support surface for pressure  
7           ulcers on the posterior trunk or pelvis (no special support surface is  
8           required for ulcers not located on the trunk or pelvis); and  
9           iii. The individual's moisture and incontinence have been appropriately  
10          managed; or

11       b. Neuropathic ulcers in individuals who meet **BOTH** of the following:

12           i. The individual has been on a comprehensive diabetic management  
13           program; and  
14           ii. Reduction in pressure on a foot ulcer has been accomplished with  
15           appropriate modalities; or

16       c. Ulcers related to venous or arterial insufficiency, in individuals who meet  
17          **ALL of** the following:

18           i. Compression bandages and/or garments have been consistently  
19           applied; and  
20           ii. Reduction in pressure on a foot ulcer has been accomplished with  
21           appropriate modalities; and  
22           iii. For initiation of therapy in the home setting, presence of the ulcer  
23           for at least 30 days; or

24       d. Dehisced wounds or wound with exposed hardware or bone; or  
25       e. Post sternotomy wound infection or mediastinitis; or  
26       f. Complications of a surgically created wound where accelerated granulation  
27           therapy is necessary and cannot be achieved by other available topical  
28           wound treatment.

29       4. The wound to be treated is free from **ALL of** the following absolute  
30          contraindications to vacuum assisted wound therapy:

31           a. Exposed anastomotic site; or  
32           b. Exposed nerves; or  
33           c. Exposed organs; or  
34           d. Exposed vasculature; or  
35           e. Malignancy in the wound; or  
36           f. Necrotic tissue with eschar present; or  
37           g. Non-enteric and unexplored fistulas; or  
38           h. Untreated osteomyelitis.

1 Continued use of electrically powered vacuum assisted wound therapy is considered  
2 medically necessary when:

- 3 Weekly assessment of the wound's dimensions and characteristics by a licensed  
4 health care professional is documented; and
- 5 Progressive wound healing is demonstrated.

6  
7 Continued use of electrically powered vacuum assisted wound therapy is considered not  
8 medically necessary when the continuation of treatment criteria above have not been met.

9  
10 NPWT is considered NOT medically necessary for one or more of the following situations:

- 11 An appropriate health care provider is not supervising or performing weekly wound  
12 measurement and assessment functions and documentation, as well as the dressing  
13 changes required.
- 14 Wound healing has occurred to the extent that NPWT is no longer needed.
- 15 The depth of the wound is less than 1 mm, as wounds of this depth cannot  
16 accommodate the sponge.
- 17 Uniform granulation tissue has been obtained.
- 18 The individual cannot tolerate the use of NPWT.
- 19 The wound is infected.
- 20 There is no progression of healing of the wound on two successive dressing changes  
21 and/or up to 30 days.

22  
23 Unproven and Not Medically Necessary:

- 24 Electrically powered vacuum assisted wound therapy is considered unproven and  
25 not medically necessary for all other applications not meeting the medical necessity  
26 criteria above, including when any absolute contraindications to vacuum assisted  
27 wound therapy are present.
- 28 Non-electrically powered vacuum assisted wound therapy (for example, the  
29 SNaP™ Wound Care Device) is considered investigational and not medically  
30 necessary for all conditions.
- 31 Portable, battery powered, single use (disposable) vacuum assisted wound therapy  
32 devices (for example, the PICO™ Single Use Negative Pressure Wound Therapy  
33 System or the V.A.C. Via™ Negative Pressure Wound Therapy System) are  
34 considered investigational and not medically necessary for all conditions.

1 **CPT®/HCPCS Codes and Descriptions**

| CPT®/HCPCS Code | CPT® Code Description                                                                                                                                                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 97605           | Negative pressure wound therapy (e.g., vacuum assisted drainage collection), utilizing durable medical equipment (DME) including topical application(s), wound assessment, and instruction(s) for ongoing care, per session; total wound(s) surface area less than or equal to 50 square centimeters |
| 97606           | Negative pressure wound therapy (e.g., vacuum assisted drainage collection), utilizing durable medical equipment (DME) including topical application(s), wound assessment, and instruction(s) for ongoing care, per session; total wound(s) surface area greater than 50 square centimeters          |
| A6550           | Wound care set, for negative pressure wound therapy electrical pump, includes all supplies and accessories                                                                                                                                                                                           |
| E2402           | Negative pressure wound therapy electrical pump, stationary or portable                                                                                                                                                                                                                              |

2

3 **Hyperbaric Oxygen (HBO)**

4 ASH considers hyperbaric oxygen therapy medically necessary for the treatment of  
 5 diabetic wounds of the lower extremities in patients who meet **ALL OF** the following  
 6 criteria:

- 7 1. Patient has type I or type II diabetes and has a lower extremity wound that is due to  
 8 diabetes;
- 9 2. Patient has a wound classified as Wagner grade III or higher; and
- 10 3. Patient has failed an adequate course of standard wound therapy.

11

12 The use of HBO therapy is covered as adjunctive therapy only after there are no measurable  
 13 signs of healing for at least 30 –days of treatment with standard wound therapy and must  
 14 be used in addition to standard wound care. Standard wound care in patients with diabetic  
 15 wounds includes assessment of a patient’s vascular status and correction of any vascular  
 16 problems in the affected limb, if possible, optimization of nutritional status, optimization  
 17 of glucose control, debridement by any means to remove devitalized tissue, maintenance  
 18 of a clean, moist bed of granulation tissue with appropriate moist dressings, appropriate  
 19 off-loading, and necessary treatment to resolve any infection that might be present. Failure  
 20 to respond to standard wound care occurs when there are no measurable signs of healing  
 21 for at least 30 consecutive days. Wounds must be evaluated at least every 30 days during  
 22 administration of HBO therapy. Continued treatment with HBO therapy is not covered if  
 23 measurable signs of healing have not been demonstrated within any 30-day period of  
 24 treatment.

|                                                           |                                                                                                                            |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <b>Systemic Hyperbaric Oxygen Therapy (HBOT):</b>         |                                                                                                                            |
| <b>CPT® codes covered if selection criteria are met:</b>  |                                                                                                                            |
| 99183                                                     | Physician or other qualified health care professional attendance and supervision of hyperbaric oxygen therapy, per session |
| <b>HCPCS codes covered if selection criteria are met:</b> |                                                                                                                            |
| G0277                                                     | Hyperbaric oxygen under pressure, full body chamber, per 30 minute interval                                                |
| <b>ICD-10 codes covered if selection criteria are met</b> |                                                                                                                            |
| E08.51 - E08.59,<br>E09.51 - E09.59                       | Diabetes mellitus due to underlying condition with peripheral circulatory disorders                                        |
| E08.618 - E08.69,<br>E09.618 - E09.69                     | Diabetes mellitus due to underlying conditions with other specified manifestations                                         |
| E11.51 - E11.59,<br>E13.51 - E13.59                       | Diabetes with peripheral circulatory disorders                                                                             |
| E11.618 - E11.69,<br>E13.618 - E13.69                     | Diabetes with other specified manifestations                                                                               |
| I83.201 - I83.229                                         | Varicose veins of lower extremities with ulcer and inflammation                                                            |

1

2

## Skin Substitutes and Soft Tissue Grafts

3

ASH considers Skin Substitutes and Soft Tissue Grafts for wound care medically necessary according to the criteria indicated below:

4

Application of a skin substitute graft/Cellular and Tissue-based Products (CTP) in the treatment of diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) is considered reasonable and necessary if the patient meets all criteria as outlined here:

5

1. The presence of a chronic, non-infected DFU having failed to achieve at least 50% ulcer area reduction with documented standard of care (SOC) treatment\* for a minimum of 4 weeks with documented compliance.
2. The presence of a chronic, non-infected VLU having failed to respond to documented SOC treatment\* for a minimum of 4 weeks with documented compliance.
3. An implemented treatment plan to be continued throughout the course of treatment demonstrating all the following:
  - Debridement as appropriate to a clean granular base.
  - Documented evidence of offloading for DFUs.
  - Documented evidence of sustained compression dressings for VLUs.
  - Infection control with removal of foreign body or focus of infection.
  - Management of exudate with maintenance of a moist environment.

1                   ○ Documentation of smoking history, and counselling on the effect of  
 2                   smoking on wound healing. Treatment for smoking cessation and outcome  
 3                   of counselling (if applicable).

4     4. The skin substitute graft/CTP is applied to an ulcer that has failed to heal or has  
 5                   stalled in response to documented SOC treatment\*. Documentation of response to  
 6                   treatment requires measurements of the initial ulcer, pre-SOC ulcer measurements,  
 7                   weekly SOC ulcer measurements, post-completion SOC ulcer measurements  
 8                   following (at least) 4 weeks of SOC treatment, ulcer measurements at initial  
 9                   placement of the skin substitute graft/CTP, and before each subsequent placement  
 10                  of the skin substitute graft/CTP. Failure to heal or stalled response despite standard  
 11                  of care measures must have preceded the application for a minimum of 4 weeks  
 12                  and established SOC treatment must continue for the course of therapy. Continuous  
 13                  compression therapy for VLUs must be documented for the episode of care.

14     5. The medical record documentation must include the interventions having failed  
 15                  during prior ulcer evaluation and management. The record must include an updated  
 16                  medication history, review of pertinent medical problems diagnosed since the  
 17                  previous ulcer evaluation, and explanation of the planned skin replacement with  
 18                  choice of skin substitute graft/CTP. The procedure risks and complications must  
 19                  also be reviewed and documented.

20     6. The patient is under the care of a qualified provider for the treatment of the systemic  
 21                  disease process(es) etiologic for the condition (e.g., venous insufficiency, diabetes,  
 22                  neuropathy) and documented in the medical record.

23

24 \*SOC treatment includes:

- 25     • Comprehensive patient assessment (e.g., history, exam, vascular assessment) and  
 26                  diagnostic tests as indicated as part of the implemented treatment plan.
- 27     • For patients with a DFU: assessment of type 1 or type 2 diabetes and management  
 28                  history with attention to certain co-morbidities (e.g., vascular disease, neuropathy,  
 29                  osteomyelitis), review of current blood glucose levels/hemoglobin A1c (HbA1c),  
 30                  diet and nutritional status, activity level, physical exam that includes assessment of  
 31                  skin, ulcer, and vascular perfusion, and assessment of off-loading devices or use of  
 32                  appropriate footwear.
- 33     • For patients with a VLU: assessment of clinical history (that includes prior ulcers,  
 34                  body mass index, history of pulmonary embolism or superficial/deep venous  
 35                  thrombosis, number of pregnancies, and physical inactivity), physical exam (e.g.,  
 36                  edema, skin changes and vascular competence), evaluation of venous reflux,  
 37                  perforator incompetence, and venous thrombosis. The use of a firm strength  
 38                  compression garment (>20 mmHg) or multi-layered compressive dressing is an  
 39                  essential component of SOC for venous stasis ulcers.

1    **Coverage requirements for skin substitute grafts/CTPs**

2    To qualify as a skin substitute graft/CTP the product **MUST** be:

- 3    1. A non-autologous human cellular or tissue product (e.g., dermal or epidermal, cellular and acellular, homograft or allograft), **OR** non-human cellular and tissue product (i.e., xenograft), **OR** biological product (synthetic or xenogeneic) applied as a sheet, allowing scaffold for skin growth, intended to remain on the recipient and grow in place or allow recipient's cells to grow into the implanted graft material **AND**
- 9    2. Supported by high-certainty evidence to demonstrate the product's safety, effectiveness, and positive clinical outcomes in the function as a graft for DFUs and/or VLUs. Substantial equivalence to predicate products does not allow sufficient evidence to support similar cleared products.

14    **Note:** Liquid or gel preparations are not considered grafts. Their fluidity does not allow graft placement and stabilization of the product on the wound.

17    The following are considered reasonable and necessary (per episode of care):

- 18    1. The maximum number of applications of a skin substitute graft/CTP within the episode of skin replacement therapy (defined as 12 to 16 weeks from the first application of a skin substitute graft/CTP) is 8 applications. The mean number of skin substitute graft/CTP applications associated with wound healing is 4; however, with documentation of progression of wound closure under the current treatment plan and medical necessity for additional applications, up to 8 applications may be allowed. Use of greater than 4 applications requires an attestation from the provider showing that requirements specified here have been met and the additional applications are medically necessary. In absence of this attestation, denial of the additional applications will occur.
- 28    2. The usual episode of care for skin substitute grafts/CTP is 12 weeks; however, some wounds may take longer to heal therefore 16 weeks is allotted with documentation that includes progression of wound closure under current treatment plan.
- 31    3. The skin substitute graft/CTP must be used in an efficient manner utilizing the most appropriate size product available at the time of treatment.
  - 33    • Excessive wastage (discarded amount) should be avoided by utilization of size appropriate packaging of the product consistent with the wound size. The graft must be applied in a single layer without overlay of product or adjacent skin in compliance with the correct label application techniques for the skin substitute graft/CTP.
- 38    4. Only skin substitute grafts/CTP with labeled indications for use over exposed muscle, tendon, or bone will be considered reasonable and necessary for those indications.

1      **Limitations**

2      The following are considered NOT reasonable and necessary:

- 3      1. Greater than 8 applications of a skin substitute graft/CTP within an episode of care  
4      (up to 16 weeks).
- 5      2. Repeat applications of skin substitute grafts/CTP when a previous application was  
6      unsuccessful. Unsuccessful treatment is defined as an increase in size or depth of  
7      an ulcer, no measurable change from baseline, and no sign of improvement or  
8      indication that improvement is likely (such as granulation, epithelialization, or  
9      progress towards closure).
- 10     3. Application of skin substitute grafts/CTP in patients with inadequate control of  
11    underlying conditions or exacerbating factors, or other contraindications (e.g.,  
12    active infection, progressive necrosis, active Charcot arthropathy of the ulcer  
13    extremity, active vasculitis, or ischemia).
- 14     4. Use of surgical preparation services (e.g., debridement), with routine, simple, or  
15    repeat skin replacement surgery with a skin substitute graft/CTP.
- 16     5. All liquid or gel skin substitute products/CTP for ulcer care.
- 17     6. Placement of skin substitute grafts/CTP on an infected, ischemic, or necrotic wound  
18    bed.

19     For more information on applicable codes for specific skin substitute products/CTP please  
20    refer to Local Coverage Determination (LCD): Skin Substitute Grafts/Cellular and Tissue-  
21    Based Products for the Treatment of Diabetic Foot Ulcers and Venous Leg Ulcers  
22    (L35041).

23     **Surgical Preparation and Skin Replacement (CPT® codes 15002 – 15005)**

- 24     1. Per the definitions and the guidelines in CPT® Code Book codes CPT® codes  
25    15002/15005 are not appropriate codes to use when performing a non-surgical  
26    application of a skin substitute.
- 27     2. CPT® codes 15002/15005 are only appropriately used in place of service inpatient  
28    hospital, outpatient hospital or ambulatory surgical center with regional or general  
29    anesthesia to resurface an area damaged by burns, traumatic injury, or surgery. An  
30    operative report is required and must be available upon request.

31     CPT® codes 15002-15005 are to be used for the initial traumatic wound preparation  
32    (removal of appreciable nonviable tissue) and cleaning to provide a viable wound surface  
33    (primary intention healing) for placement of an autograft, flap, skin substitute graft or for  
34    negative pressure wound therapy. Primary intention presumes that the performance of the  
35    skin preparation and the application of the autograft, flap, skin substitute graft or for  
36    negative pressure wound therapy is to heal the wound.

1 CPT® codes 15002-15005 are NOT to be used for the removal of nonviable tissue/debris  
2 in chronic wounds left to heal by secondary intention. CPT® 11042-11047 and CPT®  
3 97597-97598 are to be used for this.

4  
5 CPT® codes 15002-15005 are selected based on the anatomic area and size of the  
6 prepared/debrided defect. For multiple wounds, the choice of code is based on the  
7 aggregate sum of the surface area of all similarly grouped wound types.

8  
9 Codes 15002 - 15005 should NOT be reported for the removal of nonviable tissue/debris  
10 in a chronic wound (e.g., venous, or diabetic) when the wound is left to heal by secondary  
11 intention. Regarding CPT® codes 15002-15005:

- 12 • Use when preparing a proper wound surface for the placement of a graft, flap, skin  
13 replacement, skin substitute, or negative pressure therapy.
- 14 • Appreciable nonviable tissue is always removed.
- 15 • A clean wound bed may be created by incisional release of a scar contracture,  
16 resulting in a surface defect from separation of tissue.
- 17 • The purpose of these codes is to prepare the wound to heal by primary intention or  
18 negative pressure wound therapy.
- 19 • The patient's condition may require that final closure may be delayed.

20  
21 Use CPT® codes 15271 - 15278 for the surgical preparation or creation of recipient site  
22 for the tissue skin graft. Regarding CPT® codes 15271-15278:

- 23 • Wound prep codes are separate from skin substitute graft application codes.
- 24 • The ankle is considered 'leg' in terms of skin substitute graft application.
- 25 • Wound areas that skin substitute grafts will be applied are measured  
26 AFTER prep/debridement.
- 27 • Bill either the 'small' leg/ankle skin substitute graft codes or the 'large'  
28 skin substitute graft codes (see description below).
- 29 • Bill either the 'small' foot/toe skin substitute graft codes or the 'large' skin  
30 substitute graft codes (see description below).
- 31 • It is acceptable to bill both the leg/ankle and the foot/toe skin substitute graft  
32 application codes if you are treating both the leg/ankle and the foot/toe.
- 33 • Do not discount an 'add-on code'; do not apply a '-51' modifier.

34  
35 'Small Wounds' - for wounds known to have an aggregate wound size up to a maximum  
36 of 100 cm<sup>2</sup>. The codes represent the first 25 cm<sup>2</sup> or 1% of body area in infants and children,  
37 and additional 25 cm<sup>2</sup> or 1% of body area in infants and children, up to that maximum 100  
38 cm<sup>2</sup> wound area.

1 'Large Wounds' - for wounds known to have an aggregate wound size beginning at 100  
 2 cm<sup>2</sup> or greater. The 'small wound' codes would not be used in these cases; instead,  
 3 surgeons would use the 'large wound' codes which begin with a wound area of 100 cm<sup>2</sup> or  
 4 greater. "Large wound" codes refer to: 1) the initial 100 cm<sup>2</sup> or 1% of body area in infants  
 5 and children, and 2) each additional 100 cm<sup>2</sup> or 1% of body area in infants and children.  
 6

7 **CPT® Codes and Descriptions**

| CPT® Code | CPT® Code Description                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15002     | Surgical preparation or creation of recipient site by excision of open wounds, burn eschar, or scar (including subcutaneous tissues), or incisional release of scar contracture, trunk, arms, legs; first 100 sq cm or 1% of body area of infants and children                                                                                                                                                                                      |
| 15003     | Surgical preparation or creation of recipient site by excision of open wounds, burn eschar, or scar (including subcutaneous tissues), or incisional release of scar contracture, trunk, arms, legs; each additional 100 sq cm, or part thereof, or each additional 1% of body area of infants and children (List separately in addition to code for primary procedure)                                                                              |
| 15004     | Surgical preparation or creation of recipient site by excision of open wounds, burn eschar, or scar (including subcutaneous tissues), or incisional release of scar contracture, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet and/or multiple digits; first 100 sq cm or 1% of body area of infants and children                                                                                                         |
| 15005     | Surgical preparation or creation of recipient site by excision of open wounds, burn eschar, or scar (including subcutaneous tissues), or incisional release of scar contracture, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet and/or multiple digits; each additional 100 sq cm, or part thereof, or each additional 1% of body area of infants and children (List separately in addition to code for primary procedure) |
| 15271     | Application of skin substitute graft to trunk, arms, legs, total wound surface area up to 100 sq cm; first 25 sq cm or less of wound surface area                                                                                                                                                                                                                                                                                                   |

| CPT® Code | CPT® Code Description                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15272     | Application of skin substitute graft to trunk, arms, legs, total wound surface area up to 100 sq cm; each additional 25 sq cm wound surface area, or part thereof (List separately in addition to code for primary procedure)                                                                                                                                                                                |
| 15273     | Application of skin substitute graft to trunk, arms, legs, total wound surface greater than or equal to 100 sq cm; first 100 sq cm wound surface area, or 1% of body area of infants and children                                                                                                                                                                                                            |
| 15274     | Application of skin substitute graft to trunk, arms, legs, total wound surface greater than or equal to 100 sq cm; each additional 100 sq cm wound surface area, or part thereof, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)                                                                                    |
| 15275     | Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area up to 100 sq cm; first 25 sq cm or less wound surface area                                                                                                                                                                                 |
| 15276     | Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area up to 100 sq cm; each additional 25 sq cm wound surface area, or part thereof (List separately in addition to code for primary procedure)                                                                                                  |
| 15277     | Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area greater than or equal to 100 sq cm; first 100 sq cm wound surface area, or 1% of body area of infants and children                                                                                                                         |
| 15278     | Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area greater than or equal to 100 sq cm; each additional 100 sq cm wound surface area, or part thereof, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure) |

1 For preparation of wounds on the trunk, arms, and/or legs, report 15002 for the first 100 sq cm of site prep. For additional preparation (beyond 100 sq cm) in the same anatomic areas, report add-on 15003. Because 15003 is an add-on code, report it only in addition to 15002.

1 Likewise, for preparation of wounds of the face, scalp, eyelids, mouth, neck, ears, orbits,  
2 genitalia, hands, feet, and/or multiple digits, report 15004 for the first 100 sq cm of site  
3 prep. For additional preparation (beyond 100 sq cm) in the same anatomic areas, report  
4 add-on 15005—again, only in addition to 15004.

5  
6 Surgical preparation may be reported only once per wound. If the wound is prepared, but  
7 not grafted (e.g., grafting won't occur until the next day), minimal preparation of the wound  
8 bed is included in the graft code, as is removing a previous graft.

9  
10 Codes 15002-15005 apply specifically to describe the work of preparing a clean and viable  
11 wound surface for placement of an autograft, flap, skin substitute graft or for negative  
12 pressure wound therapy, according to CPT® guidelines. Surgical prep codes would not be  
13 reported for removal of nonviable tissue or debris in a chronic wound when it is left to heal  
14 by secondary intention. When a wound requires serial debridement, report active wound  
15 management (97597-97598) or debridement (11042-11047). If a wound requires negative  
16 pressure wound therapy, 15002-15005 are applicable in addition to 97605-97606.

## 17 18 **DESCRIPTION/BACKGROUND**

19 A wound by true definition is any disruption of the integrity of skin, mucous membrane,  
20 or organ tissue (Kujath & Michelsen, 2008). Wounds can be caused by mechanical,  
21 thermal, chemical, and radiogenic trauma. To be distinguished from these are those wounds  
22 that have their origin due to underlying pathologies, such as diabetes mellitus, chronic  
23 venous/arterial insufficiency, and immunological or dermatological diseases (Kujath &  
24 Michelsen, 2008). A wound may be classified in many ways; by its etiology, anatomical  
25 location, by whether it is acute or chronic, by method of closure, by its presenting  
26 symptoms or by the appearance of the predominant tissue types in the wound bed (Enoch  
27 et al., 2004). Some of the most common causes of chronic wounds are tissue loads over  
28 bony prominences and lower extremity wounds secondary to neuropathy and venous  
29 hypertension (Irion, 2010). Occasionally wounds are due to ischemia. It is critical that the  
30 clinician be able to perform a good differential diagnosis between the types of wounds  
31 (arterial, venous hypertension, neuropathic, and/or from lymphatic disease) because the  
32 management of each wound differs and may be contraindicated in the presence of ischemia.

## 33 34 **Wound Types**

35 The two major types of wounds are acute or chronic wounds. Acute wounds will heal in  
36 orderly and timely reparative processes that result in sustained restoration of anatomic and  
37 functional integrity, usually in 30 days or less (Lazarus et al., 1994). Chronic wounds, on  
38 the other hand, are wounds that fail to complete the reparative process of healing in the  
39 expected period, usually greater than 30 days, or proceeded through the healing phase  
40 without establishing the expected functional result due to an interruption in the biological  
41 or physiologic process of normal healing (ECRI, 2010). Chronic wounds generally do not  
42 achieve wound closure without some type of intervention. The common chronic cutaneous

1   wounds include venous stasis ulcers, arterial insufficiency ulcers, neuropathic ulcers, and  
2   pressure ulcers (Bello and Phillips, 2000).

3  
4   Venous stasis ulcers occur when there is an improper functioning of the venous valves,  
5   usually in the lower extremities, causing a back flow and increased pressure in veins (Bello  
6   and Phillips, 2000; Palfreyman et al., 2007). The body needs the pressure gradient between  
7   arteries and veins in order for the heart to pump blood forward through the arteries and  
8   veins. When there is an interruption in this pressure gradient and the arteries have a  
9   significantly lower pressure than the veins, which is known as venous hypertension, the  
10   blood is not pumped as effectively and causes it to pool in the lower extremities (Brem et  
11   al., 2004; Stanley et al, 2005). The standard of care for venous stasis ulcers is compression  
12   therapy at 30 to 40 mm Hg (Bello and Phillips, 2000; Palfreyman et al., 2007). Treatment  
13   regimens focus on increasing venous return and decreasing edema (Burns et al., 2007;  
14   Palfreyman et al., 2007).

15  
16   Arterial ulcers are caused by an insufficient arterial blood supply. Arterial ulcers occur  
17   because there is inadequate perfusion of skin and subcutaneous tissue, resulting in tissue  
18   ischemia and necrosis, usually due to a complete or partial blockage of the arteries (Bello  
19   and Phillips, 2000; Holloway, 1996). Arterial insufficiency occurs as a result of peripheral  
20   arterial disease (PAD) and causes decreased perfusion to the tissues distal to an arterial  
21   plaque formation. Reestablishment of an adequate vascular supply is a key factor to support  
22   proper healing. Comprehensive medical management would include wound care to the  
23   ulcer itself and management to include control of the common causes of arterial ulcers  
24   (diabetes mellitus, control of hypertension, smoking cessation, proper nutrition, and  
25   moderate exercise) (Bello and Phillips 2000; Guo and DiPietro, 2010).

26  
27   Neuropathic ulcers form as a result of peripheral neuropathy, typically seen with diabetic  
28   patients but can be due to other metabolic disease process (renal failure), trauma, or  
29   surgery. Peripheral neuropathy affects the sensory nerves responsible for detecting  
30   sensations such as temperature or pain (American Diabetes Association (AMA), 1999).  
31   This loss of sensation causes local paresthesias, usually in the feet and/or lower extremities,  
32   which can lead to microtrauma, breakdown of the overlying tissues, and eventually  
33   ulceration, often seen over pressure points on the foot. Peripheral neuropathy can also  
34   damage motor nerves causing minor muscle wasting resulting in muscle imbalances that  
35   can cause foot deformities, which can lead to more prominent bony areas giving rise to  
36   additional pressure points prone to ulceration (AMA, 1999; Krestel Editors, 2010; Lazarus  
37   et al., 1994). In addition to basic wound care management, other medical management  
38   includes maintaining optimal blood sugar levels, pressure relief at the wound site, surgical  
39   debridement, control of infection, and arterial reconstruction.

40  
41   A pressure ulcer is an injury to the skin and/or underlying tissue over a bony prominence  
42   that occurs as a result of pressure in conjunction with or without shear or friction. Pressure

1      ulcers can also result from poorly fitting casts or appliances. They can occur in soft tissue  
 2      areas due to the pressure effects of a foreign object such as a medical device. Because  
 3      muscle and subcutaneous tissue are more susceptible to pressure induced injury than  
 4      dermis and epidermis, pressure ulcers are often worse than their initial presentation.  
 5      Pressure ulcers are assessed and staged at the bedside as a clinical description of the depth  
 6      of observable tissue destruction.

7  
 8      For the purpose of this clinical practice guideline, the staging of pressure ulcers can be  
 9      classified according to the National Pressure Ulcer Advisory Panel as follows (Black et al.,  
 10     2007):

| Pressure Ulcer Stage                  | Description                                                                                                                                                                                                                                                                     |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>(Suspected) Deep Tissue Injury</b> | Purple or maroon localized area of discolored intact skin or blood-filled blister due to damage of underlying soft tissue from pressure and/or shear. The area may be preceded by tissue that is painful, firm, mushy, boggy, warmer, or cooler as compared to adjacent tissue. |
| <b>Stage I</b>                        | Intact skin with non-blanchable redness of a localized area usually over a bony prominence. Darkly pigmented skin may not have visible blanching; its color may differ from the surrounding area.                                                                               |
| <b>Stage II</b>                       | Partial-thickness loss of dermis presenting as a shallow open ulcer with a red-pink wound bed, without slough. May also present as an intact or open/ruptured serum-filled blister.                                                                                             |
| <b>Stage III</b>                      | Full-thickness tissue loss. Subcutaneous fat may be visible, but bone, tendon, or muscle are not exposed. Slough may be present but does not obscure the depth of tissue loss. May include undermining and tunneling.                                                           |
| <b>Stage IV</b>                       | Full-thickness tissue loss with exposed bone, tendon, or muscle. Slough or eschar may be present on some parts of the wound bed. Often includes undermining and tunneling.                                                                                                      |
| <b>Unstageable</b>                    | Full-thickness tissue loss in which the base of the ulcer is covered by slough (yellow, tan, gray, green, or brown) and/or eschar (tan, brown, or black) in the wound bed.                                                                                                      |

12  
 13     The National Pressure Ulcer Advisory Panel (2009) recommends debridement of  
 14     devitalized tissue within the wound bed or edge of pressure ulcers when appropriate to the  
 15     individual's condition and consistent with the overall goals of care.

1      **Osteomyelitis**

2      Osteomyelitis is inflammation of the bone caused by an infecting organism. Although bone  
 3      is normally resistant to bacterial colonization, events such as trauma, surgery, presence of  
 4      foreign bodies, or prostheses may disrupt bony integrity and lead to the onset of bone  
 5      infection. Osteomyelitis can also result from hematogenous spread after bacteremia. When  
 6      prosthetic joints are associated with infection, microorganisms typically grow in biofilm,  
 7      which protects bacteria from antimicrobial treatment and the host immune response.

8  
 9      Acute osteomyelitis presents with acute inflammatory cells, edema, vascular congestion,  
 10     and small-vessel thrombosis. In early disease, infection extends into the surrounding soft  
 11     tissue, which compromises the vascular supply to the bone, as well as host response,  
 12     surgery, and/or antibiotic therapy. Chronic osteomyelitis presents with pathologic findings  
 13     of necrotic bone, formation of new bone, and polymorphonuclear leukocyte exudation,  
 14     which is joined by large numbers of lymphocytes, histiocytes, and occasional plasma cells.

15  
 16     Surgery is indicated to treat osteomyelitis when the patient has not responded to specific  
 17     antimicrobial treatment, if there is evidence of a persistent soft tissue abscess or  
 18     subperiosteal collection, or if concomitant joint infection is suspected. Debridement of  
 19     necrotic tissues, removal of foreign materials, and sometimes skin closure of chronic  
 20     unhealed wounds is necessary in some cases (Kishner et al., 2014). The Infectious Disease  
 21     Society of America (IDSA) guideline for the treatment of diabetic foot infections (Lipsky  
 22     et al., 2012) recommends surgical intervention ranging from minor (debridement) to major  
 23     (resection, amputation) for diabetic foot infections such as osteomyelitis.

24  
 25      **Wound Healing**

26      Wound healing is traditionally divided into the following four phases: (1) exudative phase,  
 27      (2) resorptive phase, (3) proliferative phase and (4) regenerative phase. Each of the  
 28      traditional phases listed describe their biophysiological functions that occur during that  
 29      phase that leads to the next phase (Kujath & Michelsen, 2008). In recent English language  
 30      publications, wound healing is divided into the following four phases: hemostasis,  
 31      inflammation, proliferation, and tissue remodeling or resolution (Guo and DiPietro, 2010;  
 32      Kujath & Michelsen, 2008; Singer, 1999). There are many different medically accepted  
 33      terms used for wound care that describe the phases of wound healing. For the purpose of  
 34      this paper, wound healing will be referred to as a normal biological process in the human  
 35      body that is achieved through four highly integrated and overlapping phases: hemostasis,  
 36      inflammation, proliferation, and remodeling (Guo and DiPietro, 2010).

37  
 38      The primary goals of wound management are rapid wound closure and a functional,  
 39      mechanically stable and aesthetically acceptable scar (Kujath and Michelsen, 2008).  
 40      Wounds can heal either by primary intention or secondary intention depending upon  
 41      whether the wound may be closed with sutures or left to repair on its own, whereby  
 42      damaged tissue is restored by the formation of connective tissue and re-growth of

1 epithelium (Cooper, 2005). Cooper's definition of primary intention is when the edges of  
 2 the wound are approximated, and the individual layers of tissue are joined together either  
 3 by sutures, staples or tissue adhesives or a combination of all of these. Secondary intention  
 4 is when the wound sustains a degree of tissue loss where it appears that the wound closure  
 5 is impossible secondary to either the presence of infection and wound closure is undesirable  
 6 or wound edges are so far apart (Cooper, 2005). Primary wound healing is the  
 7 uncomplicated healing process that involves the non-infected, well-adapted wounds  
 8 (Kujath & Michelsen, 2008). If the healing process is disturbed by local factors such as  
 9 infections, dehiscence, inadequate blood perfusion or systemic factors such as  
 10 immunocompromise, a situation of secondary wound healing develops (Cooper, 2005;  
 11 Kujath & Michelsen, 2008; Guo and DiPietro, 2010).

12  
 13 For the normal healing process to occur, the four phases of healing and their  
 14 biophysiological functions must occur in the proper sequence, at a specific time and  
 15 continue for a specific duration at an optimal intensity (Mathieu et al., 2006). There are  
 16 many factors that can affect wound healing which may interfere with one or more of the  
 17 healing phases, thus causing improper or impaired tissue repair and delays in wound  
 18 closure. Wounds that exhibit impaired healing, which can include delayed acute wounds  
 19 and/or chronic wounds, have failed to progress through the normal stages of healing.  
 20 Chronic wounds are examples of wounds that have a biological or physiological reason for  
 21 not healing. It is the chronic wounds that frequently enter a state of pathological  
 22 inflammation due to postponed, incomplete, or uncoordinated healing process (Guo and  
 23 DiPietro, 2010).

24

### 25 **Choice of Dressing**

26 A wound will require different management and treatment at various stages of healing. No  
 27 dressing is suitable for all wounds; therefore, frequent assessment of the wound is required.  
 28 Considerations when choosing dressing products:

- 29     • Maintain a moist environment at the wound/dressing interface
- 30     • Be able to control (remove) excess exudates. A moist wound environment is good,  
       a wet environment is not beneficial
- 31     • Not stick to the wound, shed fibers or cause trauma to the wound or surrounding  
       tissue on removal
- 32     • Protect the wound from the outside environment - bacterial barrier
- 33     • Good adhesion to skin
- 34     • Sterile
- 35     • Aid debridement if there is necrotic or sloughy tissue in the wound (caution with  
       ischemic lesions)
- 36     • Keep the wound close to normal body temperature
- 37     • Conformable to body parts and doesn't interfere with body function
- 38     • Be cost-effective

1     • Diabetes - choose dressings which allow frequent inspection  
 2     • Non-flammable and non-toxic  
 3

| Dry wound                    | Minimal exudate    | Moderate exudate           | Heavy exudate                   |
|------------------------------|--------------------|----------------------------|---------------------------------|
| Non adherent island dressing | Hydrogel           | Calcium alginate           | Hydrofibre                      |
| Hydrocolloid                 | Hydrocolloid       | Hydrofibre                 | Foam                            |
| Films semi permeable         | Silicone absorbent | Foams                      | Absorbent dressing              |
|                              |                    | Negative Pressure          | Negative pressure wound therapy |
|                              |                    | Hydrocolloid: paste/powder | Ostomy                          |

4

## 5 EVIDENCE REVIEW

6 While there are numerous treatments that have been proposed as interventions to treat  
 7 chronic wounds, not all have been well-studied and there is not enough evidence to prove  
 8 their safety and effectiveness. Some of the researched treatments that have some evidence  
 9 (but may not be confirmatory) to support their safety and effectiveness include ultrasound,  
 10 low level laser, electromagnetic (EM) therapy/diathermy, electrical stimulation (ES),  
 11 hyperbaric oxygen, surgical debridement, surgical revascularization of the affected area,  
 12 myocutaneous skin flaps or grafting, use of various dressings (e.g., wet to dry, multilayer  
 13 compression bandages), negative pressure wound therapy (vacuum-assisted closure), and  
 14 the use of certain bioengineered skin substitutes. This paper will focus on those  
 15 interventions within the scope of practice of the wound care specialist.

16  
 17 Brolmann et al. (2012) completed a meta-analysis on the evidence for local and systemic  
 18 wound care. Forty-four relevant reviews were included in this summary paper. Wounds  
 19 included venous ulcers, acute wounds, pressure ulcers, diabetic ulcers, arterial ulcers, and  
 20 miscellaneous chronic wounds. The authors summarized that strong evidence supports the  
 21 effectiveness of therapeutic ultrasound, mattresses, cleansing methods, closure of surgical  
 22 wounds, honey, antibiotic prophylaxis, compression, lidocaine-prilocaine cream, skin  
 23 grafting, antiseptics, debridement, and hyperbaric oxygen therapy.

24  
 25 **Electrical Stimulation (ES)**

26 Electrical stimulation (ES) is one of several treatment modalities that have been studied for  
 27 the use of healing chronic wounds. Several randomized controlled trials have evaluated ES  
 28 with varying protocols using different currents and voltages for the healing of pressure  
 29 ulcers, venous stasis ulcers, arterial insufficiency ulcers, surgical wounds, and diabetic  
 30 wounds (Houghton, 2003; Feedar et al. 1991; Fernandez et al. 2004). It is known that living

1 tissues possess electrical potentials that may play a role in the healing process. In early  
2 studies by Wolcott et al. (1969), researchers showed that ischemic ulcers healed  
3 significantly faster with the use of electrical stimulation. Researchers have studied the use  
4 of ES with regards to the type of electrical current applied (low-intensity direct current,  
5 low-intensity pulsed current, or high-voltage pulsed current) and the placement of  
6 electrodes (in direct contact, close proximity, or to a skin wound), thereby creating an  
7 electrical current that passes through the wound (Houghton, 2003; Feedar, 1991;  
8 Fernandez, 2004; Ho, 2008; Recio et al., 2012).

9

10 Recio et al. (2012) studied the effectiveness of high-voltage electrical stimulation used to  
11 manage stage III and IV pressure ulcers among adults with spinal cord injury (SCI).  
12 Through retrospective studies the authors describe the care of adults with SCI with  
13 recalcitrant pressure ulcers below the level of injury. Electrical stimulation was applied  
14 directly into the wound bed: 60 minutes per session, 3-5 times per week; with an intensity  
15 of 100 milliamperes and frequency of 100 pulses per second. Polarity was negative,  
16 initially and was switched weekly. The amplitude and wave form were maintained  
17 throughout each treatment session. The results showed that the long-standing (11-14  
18 months) pressure ulcers were completely healed after 7 to 22 weeks of treatment with high-  
19 voltage ES. The study concluded that ES is effective for enhanced healing of Stage III-IV  
20 ulcers otherwise unresponsive to standard wound care (Recio et al., 2012).

21

22 Houghton et al. (2003) studied the effect of high voltage pulsed current (HVPC) electrical  
23 stimulation on healing chronic leg ulcers. The authors studied twenty-seven people with a  
24 total of 42 chronic leg ulcers. The subjects were separated into subgroups according to  
25 primary wound type (venous stasis, arterial insufficiency, diabetes) and then randomly  
26 assigned to receive either HVPC (100 microseconds, 150V, 100Hz) or sham treatment for  
27 45 minutes, 3 times weekly, for 4 weeks. Wound surface area and wound appearance were  
28 assessed during the initial evaluation, following 1- to 2- week period during which subjects  
29 received only conventional wound therapy, after 4 weeks of sham or HVPC treatments,  
30 and at 1 month post treatment. The results indicated that the use of HVPC to chronic leg  
31 ulcers reduced the wound surface area over the 4-week treatment period to approximately  
32 one half the initial wound sizes, which was over 2 times greater than that observed in  
33 wounds treated with the sham treatment. The authors concluded that HVPC administered  
34 3 times a week is an effective treatment to accelerate wound closure of chronic lower  
35 extremity ulcers due to diabetes, or to arterial or venous insufficiency (Houghton et al.,  
36 2003).

37

38 Studies have not adequately evaluated the safety and effectiveness of unsupervised home  
39 use of the electrical stimulation devices by a patient. Evaluation of the wound is an integral  
40 part of wound management. It is recommended that when ES is used as an intervention to  
41 treat chronic wounds, treatment should be conducted under the direct supervision of a

1 medical professional with the expertise in wound evaluation and management (CMS, 2004,  
2 2003).

3  
4 Barnes et al. (2014) conducted a review and meta-analysis of RCTs on electric stimulation  
5 vs. standard care for chronic ulcer healing. This systematic review also aimed to investigate  
6 the effect of different types of electrical stimulation on ulcer size reduction. Twenty-one  
7 studies were eligible for inclusion in the meta-analysis. Authors concluded that electrical  
8 stimulation appears to increase the rate of ulcer healing and may be superior to standard  
9 care for ulcer treatment.

10  
11 Lala et al. (2015) conducted a systematic review and meta-analysis on the effects of  
12 electrical stimulation therapy (EST) on healing pressure ulcers in individuals with spinal  
13 cord injury (SCI). A meta-analysis with five studies demonstrated that EST significantly  
14 decreased the ulcer size compared to standard wound care or sham EST. Another meta-  
15 analysis conducted with four studies showed that EST increased the risk of wound healing  
16 by 1.55 times compared with standard wound care or sham EST. Because of the wide array  
17 of outcome measures across studies, a single meta-analysis could not be conducted.  
18 However, EST appears to be an effective adjunctive therapy to accelerate and increase  
19 pressure ulcer closure in individuals with SCI.

20  
21 Chen et al. (2020) evaluated the effectiveness of electric stimulation (ES) for diabetic foot  
22 ulcer (DFU) treatment. Of the 145 randomized clinical trials initially identified, 7 studies  
23 (with a total of 274 patients) met the inclusion criteria. The percentage decrease in ulcer  
24 area at 4 weeks was significantly greater in patients treated with ES and SWC than SWC  
25 alone. The ulcer healing rate at 12 weeks was also significantly faster in the ES group.  
26 Subgroup analysis showed comparable efficacies with different waveforms (monophasic  
27 vs biphasic). Authors concluded that electrical stimulation appears to be an effective  
28 adjunctive therapy for accelerating DFU healing.

29  
30 Avendaño-Coy et al. (2021) examined the effectiveness and safety of electrical  
31 microcurrent therapy (EMT) for improving wound healing and pain in people with acute  
32 or chronic wounds. Eight RCTs were included in the qualitative summary and seven in the  
33 quantitative analysis ( $n = 337$  participants). EMT plus standard wound care (SWC)  
34 produced a greater decrease in wound surface and healing time than SWC alone, showing  
35 moderate and low certainty in the evidence, respectively. However, no differences were  
36 observed in the number of healed wounds, with very low quality of evidence. EMT  
37 decreased perceived pain, but no differences in adverse effects were noted between groups.  
38 Authors concluded that EMT is an effective, safe treatment for improving wound area,  
39 healing time, and pain. Further clinical trials that include detailed intervention parameters  
40 and protocols should be designed to lower the risk of bias.

1    **Electromagnetic Therapy (ET)/Diathermy**

2    Aziz et al. (2013) completed a Cochrane review on electromagnetic therapy for treating  
 3    venous leg ulcers to assess the effects of EMT on the healing of venous leg ulcers. Authors  
 4    concluded that there was no high-quality evidence that electromagnetic therapy increases  
 5    the rate of healing of venous leg ulcers, and further research is needed. Wang et al. (2024)  
 6    evaluated the effects of electromagnetic therapy (EMT) on the treatment of venous leg  
 7    ulcers (VLUs) by synthesizing and appraising available meta-analyses (MAs) and  
 8    systematic reviews (SRs). The search yielded five eligible studies. The reviews collectively  
 9    presented moderate methodological quality and a low risk of bias in several domains.  
 10   Reporting quality was high, albeit with inconsistencies in fulfilling certain PRISMA  
 11   checklist items. The evidence quality, primarily downgraded due to small sample sizes,  
 12   was rated as moderate. While some studies suggest potential benefits of EMT in the  
 13   treatment of VLUs, the overall evidence is inconclusive due to methodological limitations  
 14   and limited sample sizes. This review underscores the need for future research with more  
 15   rigorous methodologies and larger cohorts to provide clearer insights into the efficacy of  
 16   EMT for VLUs.

17    **Ultraviolet (UV) Light**

18    Chen et al. (2014) sought to determine the effects of phototherapy on the healing of  
 19    pressure ulcers. Seven RCTs involving 403 participants were selected. All the trials were  
 20    at unclear risk of bias. Trials compared the use of phototherapy with standard care only (6  
 21    trials) or sham phototherapy (1 trial). Only one of the trials included a third arm in which  
 22    another type of phototherapy was applied. Overall, there was insufficient evidence to  
 23    determine the relative effects of phototherapy for healing pressure ulcers. Variations in  
 24    studies did not allow for pooling of the studies to draw any conclusions as to whether  
 25    phototherapy is effective or not. Authors conclude that uncertainty exists as to the effects  
 26    of phototherapy in treating pressure ulcers. The quality of evidence is very low due to the  
 27    unclear risk of bias and small number of trials available for analysis. The possibility of  
 28    benefit or harm of this treatment cannot be ruled out. Further research is recommended.

29    Inkaran et al. (2021) examined the effect of UV light on wound healing and infection in  
 30    patients with skin ulcers or surgical incisions. Outcomes of interest included healing time,  
 31    wound size and appearance, bacterial burden, and infection. Comparative and  
 32    noncomparative clinical studies were considered, including observational cohort,  
 33    retrospective, and randomized controlled studies. They addressed the research question:  
 34    "Does the use of UV light as an adjunct to conventional treatment help improve healing  
 35    and reduce infection in wounds?" The search yielded 30,986 articles, and screening  
 36    resulted in 11 studies that underwent final analysis. Of these ( $N = 27,833$ ), seven (64%)  
 37    demonstrated an improvement in healing outcomes with adjunctive UV therapy, and the  
 38    results of four (36%) achieved statistical significance. Authors concluded there is limited  
 39    research on the utility of adjunctive UV therapy to improve wound healing outcomes in  
 40    humans. The majority of literature included in this review supported improved wound  
 41    healing with UV therapy.

1 healing outcomes with adjuvant UV therapy. Future well-designed randomized controlled  
 2 trials will be essential in further determining the benefit and utility of UV therapy in wound  
 3 healing.

4

### 5 Non-Contact Ultrasound

6 Olyaie et al. (2013) conducted a RCT to compare the effectiveness of standard treatment  
 7 and standard treatment plus either high-frequency ultrasound (HFU) or noncontact low-  
 8 frequency ultrasound (NCLFU) on wound outcomes. Outcomes of both methods of  
 9 ultrasound therapy were better than standard care alone, and some differences between the  
 10 two ultrasound therapy groups were observed, but they were not statistically significant.  
 11 Beheshti et al. (2014) compared high-frequency and MIST ultrasound therapy for the  
 12 healing of venous leg ulcers. All groups received standard wound care. In the ultrasound  
 13 groups, HFU and MIST ultrasound therapy was administered to wounds 3 times per week  
 14 until the wound healed. Time of complete wound healing was recorded. Wound size, pain,  
 15 and edema were assessed at baseline and after 2 and 4 months. The authors stated that this  
 16 study showed the significant effectiveness of ultrasound therapy in wound healing.  
 17 Differences between the two ultrasound therapy groups were not statistically significant.  
 18 White et al. (2015) compared non-contact low-frequency ultrasound therapy to the UK  
 19 standard of care for venous leg ulcers. Both groups reported a reduction in pain score. The  
 20 authors suggest that outcome measures favored the non-contact low frequency ultrasound  
 21 therapy over standard of care, but the differences were not statistically significant. A larger  
 22 sample size with longer follow up would be prudent to confirm results.

23

24 In a single-site, evaluator-blinded RCT, Gibbons et al. (2015) completed a prospective,  
 25 randomized, controlled, multicenter trial comparing percent wound size reduction,  
 26 proportions healed, pain, and quality-of-life (QOL) outcomes in patients randomized to  
 27 standard care (SC) alone or SC and 40 kHz noncontact, low-frequency ultrasound (NLFU)  
 28 treatments 3 times per week for 4 weeks. All participants received protocol-defined SC  
 29 compression (30-40 mm Hg), dressings to promote a moist wound environment, and sharp  
 30 debridement at the bedside for a minimum of 1 time per week. After 4 weeks of treatment,  
 31 average wound size reduction was  $61.6\% \pm 28.9$  in the NLFU+SC compared to  $45\% \pm 32.5$   
 32 in the SC group ( $P = 0.02$ ). Reductions in median (65.7% versus 44.4%,  $P = 0.02$ ) and  
 33 absolute wound area (9.0 cm<sup>2</sup> versus 4.1 cm<sup>2</sup>,  $P = 0.003$ ) as well as pain scores (from 3.0  
 34 to 0.6 versus 3.0 to 2.4,  $P = 0.01$ ) were also significant. NLFU therapy with guideline-  
 35 defined standard care should be considered for healing venous leg ulcers not responding to  
 36 SC alone. Rastogi et al. (2019) compared the efficacy of noncontact, low-frequency  
 37 airborne ultrasound (Glybetac) therapy with sham therapy added to standard treatment in  
 38 patients with neuropathic, clinically infected, or noninfected diabetic foot ulcer (DFU)  
 39 (wound size  $>2$  cm<sup>2</sup>), Wagner grades 2 and 3. Patients received ultrasound or sham therapy  
 40 for 28 days dosed daily for first 6 days followed by twice a week for next 3 weeks along  
 41 with standard of care. The primary outcome was the percentage of patients with at  
 42 least  $>50\%$  decrease in wound area at 4 week of intervention. Fifty-eight patients

1 completed the study protocol. A >50% reduction in wound area was observed in 97.1%  
2 and 73.1% subjects in ultrasound and sham groups, respectively. Wound contraction was  
3 faster in the first 2 weeks with ultrasound therapy, 5.3 cm<sup>2</sup>, compared with 3.0 cm<sup>2</sup> with  
4 sham treatment. Authors concluded that the airborne low-frequency ultrasound therapy  
5 improves and hastens the healing of chronic neuropathic DFU when combined with  
6 standard wound care.

7  
8 Kotronis and Vas (2021) evaluated the current evidence behind the NCLFU. Several  
9 studies, especially those evaluating NCLFU technology, have demonstrated the potential  
10 of ultrasound debridement to effectively remove devitalized tissue, control bioburden,  
11 alleviate pain, and expedite healing. However, most of the studies are underpowered,  
12 involve heterogeneous ulcer types, and demonstrate significant methodological limitations  
13 making comparison between studies difficult. Future clinical trials on ultrasound  
14 debridement technology must address the design issues prevalent in current studies, and  
15 report on clinically relevant endpoints before adoption into best-practice algorithms can be  
16 recommended.

## 17 **Ultrasound**

18 A randomized controlled study of 305 subjects explored the efficacy of physical methods  
19 for healing venous leg ulcers, including high-voltage electrical stimulation, ultrasound, and  
20 low-level laser therapy, which was performed for 7 weeks (once a day, 6 days a week).  
21 Results indicated high-voltage stimulation and ultrasound therapy are useful methods in  
22 the conservative treatment of venous leg ulcers (Taradaj et al., 2012). Polak et al. (2014)  
23 evaluated the effectiveness of ultrasound in the treatment of Stage II and Stage III pressure  
24 ulcers in geriatric patients. Participants (age range of 71 to 95 years,) all with wounds that  
25 did not respond to previous treatment for at least 4 weeks, were randomly assigned to the  
26 treatment group or control group. All patients received standard wound care (SWC); with  
27 the treatment group also receiving ultrasound (1 MHz, 0.5 W/cm<sup>2</sup>, duty cycle of 20 %, 1  
28 to 3 minutes/cm<sup>2</sup>; 1 session per day, 5 days a week). Patients were monitored for 6 weeks  
29 or until wounds closed. Percent change in wound surface area (WSA), the weekly rate of  
30 change in WSA, and the percentage of pressure ulcers that improved (i.e., decreased in size  
31 by at least 50 % or closed) were used to compare differences. After 6 weeks of treatment,  
32 the WSA of pressure ulcers decreased significantly in both groups with significantly  
33 greater improvement in the treatment group (an average of 68.80 % ± 37.23 % compared  
34 with 37.24 % ± 57.84 %; p = 0.047). The mean weekly change of WSA was greater in the  
35 treatment group as well, but only for Stage II pressure ulcers than in the control group. The  
36 authors concluded that the findings of this study showed US therapy can reduce the WSA  
37 of pressure ulcers regardless of their shape, but further research is needed to establish how  
38 ultrasound influences the healing of Stage III and Stage IV pressure ulcers. Tricco et al.  
39 (2015) identified effective interventions to treat complex wounds through an overview of  
40 systematic reviews. Overall, 99 systematic reviews were included; 54 were systematic  
41 reviews with a meta-analysis (including data on over 54,000 patients) and 45 were

1 systematic reviews without a meta-analysis. Overall, 4% of included reviews were rated as  
2 being of high quality (AMSTAR score greater than or equal to 8). Based on data from  
3 systematic reviews including a meta-analysis with an AMSTAR score greater than or equal  
4 to 8, promising interventions for complex wounds were identified. These included  
5 bandages or stockings (multi-layer, high compression) and wound cleansing for venous leg  
6 ulcers; 4-layer bandages for mixed arterial/venous leg ulcers; biologics, ultrasound, and  
7 hydrogel dressings for diabetic leg/foot ulcers; hydrocolloid dressings, electrotherapy, air-  
8 fluidized beds, and alternate foam mattresses for pressure ulcers; and silver dressings and  
9 ultrasound for unspecified mixed complex wounds.

10

### 11 **Low-Level Laser Therapy (LLLT)**

12 Many researchers have proposed that low-level laser therapy (LLLT) may be an effective  
13 treatment modality to promote wound healing and pain relief (Enwemeka, 2004; Hopkins,  
14 2004; Posten, 2005). Samsun et al. (AHRQ, 2004) provided an overview of clinical and  
15 methodological issues relevant to evaluating the evidence on interventions for wound  
16 healing. The objective of this evidence report was to systematically review and synthesize  
17 the available evidence on the effectiveness of low-level laser treatment and vacuum-  
18 assisted closure for wound healing. Overall, the studies that met selection criteria for low-  
19 level laser were poor and do not permit definitive conclusions on whether low-light laser  
20 increases the rate of healing for chronic wounds. The available data suggest that the  
21 addition of laser therapy does not improve wound healing, as the vast majority of  
22 comparisons in these studies do not report any group differences in the relevant outcomes.  
23 With the majority of the studies, the low sample sizes and the lack of trends or patterns of  
24 outcomes could be the reason for no definitive conclusions. Low light laser therapy has  
25 potential to improve wound care, but there are limited reports of outcomes that have been  
26 demonstrated in well-controlled randomized trials (AHRQ, 2004). Additionally, laser  
27 parameters are not consistent from study to study and thus, results in difficulty in drawing  
28 conclusions.

29

30 Enwemeka et al. (2004) used statistical meta-analysis to determine the overall treatment  
31 effects of laser phototherapy (low-level laser) on tissue repair and pain relief. Thirty-four  
32 articles on tissue repair and nine articles on pain control met inclusion criteria. Meta-  
33 analysis revealed a positive effect of laser phototherapy on tissue repair and pain control.  
34 Further, analysis revealed the positive effects of various wavelengths of laser light on tissue  
35 repair, with 632.8 nm having the highest treatment effect and 780 nm the least. The overall  
36 treatment effect for pain control was positive as well. The authors concluded that laser  
37 phototherapy is a highly effective therapeutic modality for tissue repair and pain relief  
38 (Enwemeka et al., 2004). In another study by Enwemeka (2009), it was reported that  
39 inaccurate measurement and incorrect reporting dosages are major shortcomings of  
40 phototherapy research. Enwemeka reported that there are as many as 30% of published  
41 reports in the field lacking relevant information needed to determine a dosage or that

1 reported dosages that are not accurate. Further studies are needed to determine strategies  
2 to improve dosages in the use of low-level laser for tissue repair and pain relief.

3  
4 Posten et al. (2005) studied the mechanism and efficacy of low-level laser therapy (LLLT)  
5 for wound healing. This group of researchers critically evaluated reported in vitro models  
6 and in vivo animal and human studies, to assess the qualitative and quantitative sufficiency  
7 for the efficacy of LLLT in promoting wound healing. After the authors examined the  
8 effects of LLLT on cell cultures in vitro, they concluded that some authors report an  
9 increase in cell proliferation and collagen production using specific and somewhat arbitrary  
10 laser settings with the helium neon (HeNe) and gallium arsenide (GaAs) lasers. Although  
11 increases in cell proliferation and collagen production using specific laser settings was  
12 reported, it could not be determined which properties (i.e., photothermal, photochemical,  
13 or photomechanical) of the LLLT produced the positive effect (Posten et al., 2005). Some  
14 studies using HeNe lasers reported improvements in surgical wound healing in a rodent  
15 model; however, the results have not been duplicated in animals such as pigs, which have  
16 skin that closely resembles that of humans. Studies that involved humans have beneficial  
17 effects on superficial wound healing found in small case series and have not been replicated  
18 in larger studies (Posten et al., 2005). Although applications of high-energy (10-100W)  
19 lasers are well established with significant supportive literature and widespread use,  
20 conflicting studies in the literature have limited LLLT use in the United States to  
21 investigational use only (Posten et al., 2005).

22  
23 Another randomized, triple-blind, placebo-controlled design by Hopkins et al. (2004)  
24 assessed the putative effects of LLLT on healing using an experimental model. Subjects  
25 received LLLT from either a laser or a sham cluster head (8 J/cm<sup>2</sup> for 2 minutes, 5 seconds)  
26 to one of two randomly chosen wounds. Data were analyzed for wound contraction (area),  
27 color changes (chromatic red), and luminance. The results for group by wound by time  
28 interaction showed at days 6, 8, and 10 follow-up testing revealed that the laser group had  
29 smaller wounds (decreased area measurements) than the sham group for both the treated  
30 and the untreated wounds. The authors concluded that LLLT resulted in the enhanced  
31 wound healing as measured by wound contraction. The untreated wounds in subjects  
32 treated with LLLT contracted more than the wounds in the sham group, thus LLLT may  
33 produce an indirect healing effect on surrounding tissues. Data indicates that LLLT is an  
34 effective modality to facilitate wound contraction of partial thickness wounds (Hopkins et  
35 al., 2004).

36  
37 A double-blinded RCT of 23 patients with diabetic foot ulcers who were randomly assigned  
38 to LLLT or a sham control group. The treatment group received LLLT six times per week  
39 for a minimum of two consecutive weeks, then laser therapy every other day up to complete  
40 healing of the ulcer for a maximum of 20 weeks. After 4 weeks of treatment, the  
41 intervention group demonstrated significantly decreased ulcer size, but at 20 weeks, there  
42 was no statistically significant difference in ulcer healing time between the two groups.

1 The authors recommended completion of additional studies with larger samples and longer  
2 follow-up time (Kaviani et al., 2011). Another randomized controlled study of 34 patients  
3 with venous leg ulcers demonstrated no significant differences in reduction of ulcer size  
4 between the laser treatment and control groups following a 9-week intervention period  
5 (LeClere et al., 2010). A randomized controlled study of 305 subjects explored the efficacy  
6 of physical methods for healing venous leg ulcers, including high-voltage electrical  
7 stimulation, ultrasound, and low-level laser therapy, which was performed for 7 weeks  
8 (once a day, 6 days a week). Results indicated no significant effect or improvement in  
9 healing with the use of laser therapy for venous ulcers. (Taradaj et al., 2012). Beckmann et  
10 al. (2014) completed a systematic literature review of LLLT for wound healing of diabetic  
11 ulcers. They concluded that although the majority of clinical studies show a potential  
12 benefit of LLLT in wound healing of diabetic ulcers, there are several aspects in these  
13 studies limiting final evidence about the actual outcomes. In summary, all studies give  
14 enough evidence to continue research on laser therapy for diabetic ulcers, but clinical trials  
15 using human models do not provide sufficient evidence to establish the usefulness of LLLT  
16 as an effective tool in wound care regimes at present. Further well-designed research trials  
17 are required to determine the true value of LLLT in routine wound care.

18  
19 Zhou et al. (2021) aimed to synthesize and systematically review the best evidence to assess  
20 the efficacy of low-level light therapy in improving healing of diabetic foot ulcers. Twelve  
21 randomized controlled trials were included. Meta-analysis revealed that 30.90% of the  
22 ulcer area was significantly reduced in the therapy group compared with the control group  
23 with a very large effect. A 4.2 cm<sup>2</sup> reduction of the ulcer area was observed in the therapy  
24 group compared with the control group with a very large effect. In addition, diabetic foot  
25 ulcers in the therapy group were 4.65 times more likely to heal completely than those in  
26 the control group. Authors conclude that low-level light therapy accelerates wound healing  
27 and reduces the size of diabetic foot ulcers. However, the review does not allow any  
28 recommendation for the best treatment parameters required to achieve improved healing.  
29 Future trials need to include a good design and large sample size in defining the optimal  
30 treatment parameters for ulcers of different sizes.

31  
32 Sutton et al. (2021) provided a comprehensive narrative review and critical appraisal of  
33 research investigating photobiomodulation (PBM), formerly known as low level laser  
34 therapy which includes lasers and light emitting diodes (LEDs), as a treatment to promote  
35 diabetic foot and lower leg ulcer (DFU) healing for humans. A total of 13 studies, with a  
36 total of 417 participants, were included in this review. The studies were critically appraised  
37 using the PEDro scale, which revealed weaknesses in study designs such as small sample  
38 sizes and problems with reproducibility with respect to the laser protocols. Characteristics  
39 of PBM that improved wound healing were wavelengths of 630 nm-660 nm and infrared  
40 wavelengths of 850 or 890 nm, and radiant exposure levels of 3 J/cm<sup>2</sup>-7 J/cm<sup>2</sup>. PBM was  
41 beneficial for superficial and deep DFUs. Controlled blood glucose levels and adherence  
42 to best practices (i.e., pressure off-loading, optimized wound dressing changes, appropriate

1 debridement) could have been a factor in the beneficial outcomes. Authors concluded that  
2 regardless of the laser characteristics chosen, in the majority of studies PBM as a treatment  
3 for DFUs improved healing rate when compared with standard wound care alone.  
4 However, weaknesses across the studies indicate that further research is required.

5  
6 Zhang et al. (2024) evaluated the impact of red and infrared light on the healing of DFUs  
7 and provided evidence-based recommendations for future clinical adjunctive treatments of  
8 DFUs. A total of 28 studies, involving 1,471 patients, were included. The meta-analysis  
9 showed that groups treated with red and infrared light had a significantly higher ulcer  
10 healing rate, shorter ulcer healing time, increased peak blood flow velocity in the dorsalis  
11 pedis artery, and reduced wound pain score. Authors concluded that the use of red and  
12 infrared light as an adjunctive treatment for DFUs is more beneficial than conventional  
13 wound care. However, due to limitations in the quality and sample size of the included  
14 studies, further high-quality research is needed to validate these conclusions.

### 15 16 **Negative Pressure Wound Therapy (NPWT)**

17 Negative Pressure Wound Therapy (NPWT) is used to describe the treatment of a wound  
18 with topical negative pressure including atmospheric pressure therapy or dressing, vacuum  
19 sealing technique, foam suction dressing, vacuum compression, vacuum pack, sealed  
20 surface wound suction or sealing aspirative therapy (National Institute for Health and  
21 Clinical Excellence, 2005). The principles of the application of NPWT to a wound may aid  
22 in the healing process due to the following mechanisms: 1) wound contraction, 2)  
23 stimulation of granulation tissue formation, 3) continuous wound cleansing after adequate  
24 primary surgical debridement, 4) continuous removal of exudates, and 5) reduction of  
25 interstitial edema (AHQR, 2009; Willy et al., 2007). NPWT is primarily intended for  
26 chronic wounds that have not healed when treated with either standard care or other forms  
27 of wound care (ECRI, 2009). The development of negative pressure techniques for wound  
28 healing derives from two theories: removal of wound exudates while decreasing edema  
29 and concentrations of inhibitory factors and increasing blood flow; and negative pressure  
30 stretches and deforms the tissue and disturbs the extracellular matrix which induces  
31 biochemical responses that promote wound healing (ERCI, 2009).

32  
33 The Centers of Medicare and Medicaid Services partnered with the Agency for Health  
34 Research and Quality (AHRQ) to commission a review of NPWT devices. AHRQ  
35 contracted with the Institute Evidence-based Practice Center to perform the review  
36 (AHRQ, 2009). The report specifically examined the use of NPWT for treatment of the  
37 following wound types: diabetic foot ulcers, pressure ulcers, vascular ulcers (both venous  
38 and arterial), burn wounds, surgical wounds (particularly infected sternal wounds) and  
39 trauma-induced wounds. This technology assessment report on NPWT found that the  
40 systematic reviews of NPWT reveal several important points about the use of NPWT  
41 modality. First, all the systematic reviews noted a lack of high-quality clinical evidence  
42 supporting the advantages of NPWT compared to the other wound treatments. The lack of

1 high-quality evidence resulted in many of the systematic reviewers relying on low-quality  
2 retrospective studies to judge the efficacy of NPWT technology. Secondly, the other  
3 systematic reviews found no studies published that directly compared the different types  
4 of NPWT devices or components. Direct comparison studies are needed to help determine  
5 the importance of the dressing approaches (foam or gauze) that may provide the best  
6 potential for wound healing. Thirdly, other systemic reviews concluded that NPWT must  
7 be evaluated according to wound type. Wound healing varies according to the type of  
8 wound being treated and NPWT benefits described for one type of wound cannot be  
9 transferred to other wound types (AHRQ, 2009). The overall assessment concluded that  
10 the available evidence cannot be used to determine a significant therapeutic distinction of  
11 a particular NPWT system (AHRQ, 2009). Due to lack of studies comparing one NPWT  
12 system to another NPWT system, the severity of adverse events for one NPWT compared  
13 to another could not be determined (AHRQ, 2009).

14  
15 A multi-center randomized controlled study by Blume et al. (2008) evaluated the safety  
16 and clinical efficacy of NPWT compared with advanced moist wound therapy (AMWT)  
17 (predominately hydrogels and alginates) to treat foot ulcers in diabetic patients. Complete  
18 ulcer closure was defined as skin closure (100% reepithelialization) without drainage or  
19 dressing requirements. Patients were randomly assigned to either NPWT or AMWT and  
20 received standard off-loading as needed. The trial evaluated treatment until day 112 or  
21 ulcer closure by any means. Patients whose wounds achieved ulcer closure were followed  
22 at 3 and 9 months. The authors showed a greater proportion of the foot ulcers achieved  
23 complete ulcer closure with NPWT than with AMWT within the 112-day active treatment  
24 phase. The patients that received the NPWT experienced significantly fewer secondary  
25 amputations. In assessing the overall safety, no significant difference between the groups  
26 was observed in treatment-related complications such as infection, cellulitis, and  
27 osteomyelitis at 6 months. The authors of this study concluded that NPWT appears to be  
28 as safe as and more efficacious than AMWT for the treatment of diabetic foot ulcers  
29 (Blume et al., 2008). In 2015, a Cochrane review was completed by Dumville et al. on  
30 NPWT for treating pressure ulcers in any care setting. Authors concluded that there is  
31 currently no high quality RCT available regarding the effects of NPWT compared to  
32 alternatives for the treatment of pressure ulcers. Also, they express that high uncertainty  
33 remains about the potential benefits or harms or both of treatment using NPWT. An update  
34 of the Cochrane review was completed in 2019. Despite the addition of 25 trials, results  
35 were consistent with the earlier review, with the evidence judged to be of low or very low  
36 certainty for all outcomes. Consequently, uncertainty remains about whether NPWT  
37 compared with a standard dressing reduces or increases the incidence of important  
38 outcomes such as mortality, dehiscence, seroma, or if it increases costs.

39  
40 The US Food and Drug Administration (FDA) issued a Preliminary Public Health  
41 Notification: Serious Complications Associated with NPWT Systems. The FDA issued the  
42 alert to make individuals aware of deaths and serious complications, especially bleeding

1 and infection, associated with the use of NPWT systems, and to provide recommendations  
2 to reduce the risk (FDA, 2009; FDA, 2011). Although complications are rare, if NPWT is  
3 not used properly by trained medical personnel, complications can occur. The FDA  
4 recommends selecting patients for NPWT carefully, after reviewing the most recent device  
5 labeling and instructions, and that the patient is monitored frequently in an appropriate care  
6 setting by trained practitioner. The patient's condition, including the wound status, wound  
7 location, and co-morbidities must be considered and monitored prior and during NPWT  
8 treatment. The FDA recommends numerous patient risk factors/characteristics need to be  
9 considered before the use of NPWT. The FDA recommends that NPWT is contraindicated  
10 for these wound types/conditions:

- Necrotic tissue with eschar present
- Untreated osteomyelitis
- Non-enteric and unexplored fistulas
- Malignancy in the wound
- Exposed vasculature
- Exposed nerves
- Exposed anastomotic site
- Exposed organs, such as eyes

20 The FDA issued an updated report (February 2011) on the original Preliminary Public  
21 Health Notification: Serious Complications Associated with NPWT Systems, issued in  
22 2009. The FDA received reports of an additional six deaths and 97 injuries, for a total of  
23 12 deaths and 174 injury reports since 2007. The new recommendation was in regard to  
24 the safety and effectiveness of NPWT systems in newborns, infants and children; safety  
25 and effectiveness has not been established at this time and currently there are no NPWT  
26 systems cleared for use in these pediatric populations. The FDA will continue to monitor  
27 adverse events associated with NPWT systems and will make available any new  
28 information that might affect their use (FDA, 2009; FDA, 2011).

29 A systematic review of interventions to enhance healing of chronic ulcers of the foot in  
30 patients with diabetes concluded that overall, the heterogeneity and poor methodology  
31 made it difficult to draw conclusions (Game et al., 2012). Forty-three studies were selected  
32 for full review. They identified 10 categories: sharp debridement and wound bed  
33 preparation with larvae and hydrotherapy; wound bed preparation using antiseptics,  
34 applications and dressing products; resection of the chronic wound; hyperbaric oxygen  
35 therapy (HBOT); compression or negative pressure therapy; products designed to correct  
36 aspects of wound biochemistry and cell biology associated with impaired wound healing;  
37 application of cells, including platelets and stem cells; bioengineered skin and skin grafts;  
38 electrical, electromagnetic, lasers, shockwaves and ultrasound; other systemic therapies  
39 which did not fit in the above categories. Thus, for this specific condition and type of  
40 wound, conclusions as to the best evidence of treatment interventions are not possible due  
41 to lack of controlled studies and design issues (Game et al., 2012).

1 Seidel et al. (2020) evaluated effectiveness and safety of negative pressure wound therapy  
2 (NPWT) in patients with diabetic foot wounds in clinical practice. Three hundred sixty-  
3 eight patients were randomized, and 345 participants were included in the modified  
4 intention-to-treat (ITT) population. Adult patients suffering from a diabetic foot ulcer at  
5 least for 4 weeks and without contraindication for NPWT were allowed to be included.  
6 NPWT was compared with standard moist wound care (SMWC) according to local  
7 (Germany) standards and guidelines. Primary outcome was wound closure within 16  
8 weeks. Secondary outcomes were wound-related and treatment-related adverse events  
9 (AEs), amputations, time until optimal wound bed preparation, wound size and wound  
10 tissue composition, pain, and quality of life (QoL) within 16 weeks, and recurrences and  
11 wound closure within 6 months.

12  
13 Authors concluded that NPWT was not superior to SMWC in diabetic foot wounds in  
14 German clinical practice. Overall, wound closure rate was low. Documentation deficits and  
15 deviations from treatment guidelines negatively impacted the outcome wound closure.  
16 Norman et al. (2020) assessed the effects of NPWT for preventing surgical site infections  
17 (SSI) in wounds healing through primary closure, and to assess the cost-effectiveness of  
18 NPWT in wounds healing through primary closure. Trials were included if they allocated  
19 participants to treatment randomly and compared NPWT with any other type of wound  
20 dressing or compared one type of NPWT with another type of NPWT. In this third update,  
21 15 new randomized controlled trials (RCTs) and three new economic studies were added,  
22 resulting in a total of 44 RCTs (7,447 included participants) and five economic studies.  
23 Studies evaluated NPWT in the context of a wide range of surgeries including orthopaedic,  
24 obstetric, vascular, and general procedures. All studies compared NPWT with standard  
25 dressings. Most studies had unclear or high risk of bias for at least one key domain. Authors  
26 concluded that people experiencing primary wound closure of their surgical wound and  
27 treated prophylactically with NPWT following surgery probably experience fewer SSI than  
28 people treated with standard dressings (moderate-certainty evidence). There is no clear  
29 difference in number of deaths or wound dehiscence between people treated with NPWT  
30 and standard dressings (low-certainty evidence). There are also no clear differences in  
31 secondary outcomes where all evidence was low or very low certainty. Most evidence on  
32 pain is very low-certainty, but there is probably no difference in pain between NPWT and  
33 standard dressings after surgery for lower limb fracture (moderate-certainty evidence).

34  
35 Zens et al. (2020) performed a systematic review of randomized controlled trials (RCTs)  
36 comparing the patient-relevant benefits and harms of NPWT with standard wound therapy  
37 (SWT) in patients with wounds healing by secondary intention. Forty-eight eligible studies  
38 of generally low quality with evaluable data for 4,315 patients and 30 eligible studies with  
39 missing data for at least 1386 patients were identified. A meta-analysis of all wound healing  
40 data showed a significant effect in favor of NPWT. There was neither proof (nor indication  
41 nor hint) of greater benefit or harm of NPWT for other patient-relevant outcomes such as  
42 mortality and adverse events. Authors concluded that low-quality data indicate a greater

1 benefit of NPWT versus SWT for wound closure in patients with wounds healing by  
2 secondary intention. The length of hospital stay is also shortened. The data show no  
3 advantages or disadvantages of NPWT for other patient-relevant outcomes. Publication  
4 bias is an important problem in studies on NPWT, underlining that all clinical studies need  
5 to be fully reported.

6  
7 Pedrazi et al. (2021) completed a systematic review, including a total of 466 patients, which  
8 shows that NPWT as the initial treatment for burned children and after skin grafting has  
9 been shown to produce promising results. In the majority of studies, skin graft take rate is  
10 close to 100%. This therapy is particularly beneficial in the pediatric population because  
11 of less frequent dressing changes and early mobilization. Authors note that NPWT is not  
12 in the subject of controlled clinical trials in pediatric; most publications are case reports or  
13 retrospective reviews. The sporadic complications include bleeding, local infections, and  
14 mechanical device issues. Prospective randomized studies are needed to provide validated  
15 rules. Putri et al. (2022) reviewed the risks and benefits of NPWT in surgical wounds with  
16 the underlying malignant disease compared with conventional wound care (CWC). The  
17 first outcome was wound complications, divided into surgical site infection (SSI), seroma,  
18 hematoma, and wound dehiscence. The secondary outcome was hospital readmission.  
19 Thirteen observational studies with 1,923 patients and seven RCTs with 1,091 patients  
20 were included. NPWT group showed significant decrease in the risk of SSI and seroma in  
21 observational studies with P value <0.05, as well as RCTs but were not significant. Wound  
22 dehiscence and hospital readmission showed lower risks in NPWT group but were not  
23 significant. Hematoma showed no significant difference. Authors concluded that NPWT is  
24 not contraindicated in cancer surgical wounds and can be considered a beneficial palliative  
25 treatment to promote wound healing. Gillespie et al. (2022) summarized the evidence on  
26 the effectiveness of negative pressure wound therapy (NPWT) for preventing SSI and other  
27 wound complications in obese women after CS. Ten RCTs with 5,583 patients were  
28 included; studies were published between 2012 and 2021. Nine RCTs with 5,529 patients  
29 were pooled for the outcome SSI. Meta-analysis results suggest a significant difference  
30 favoring the NPWT group, indicating an absolute risk reduction of 1.8% among those  
31 receiving NPWT compared with usual care. The risk of blistering in the NPWT group was  
32 significantly higher. All studies had high risk of bias relative to blinding of  
33 personnel/participants. Only 40% of studies reported blinding of outcome assessments and  
34 50% had incomplete outcome data. Authors concluded that the decision to use NPWT  
35 should be considered both in terms of its potential benefits and its limitations.

36  
37 Shi et al. (2023) evaluated the effectiveness of NPWT for treating adult with pressure ulcers  
38 in any care setting in a Cochrane Review. Authors included published and unpublished  
39 randomized controlled trials (RCTs) comparing the effects of NPWT with alternative  
40 treatments or different types of NPWT in the treatment of adults with pressure ulcers (stage  
41 II or above). This review included eight RCTs with a total of 327 randomized participants.  
42 Six of the eight included studies were deemed to be at a high risk of bias in one or more

1 risk of bias domains, and evidence for all outcomes of interest was deemed to be of very  
2 low certainty. Most studies had small sample sizes (range: 12 to 96, median: 37  
3 participants). Five studies compared NPWT with dressings, but only one study reported  
4 usable primary outcome data (complete wound healing and adverse events). This study had  
5 only 12 participants and there were very few events; only one participant was healed in the  
6 study (risk ratio (RR) 3.00, very low-certainly evidence). There was no evidence of a  
7 difference in the number of participants with adverse events in the NPWT group and the  
8 dressing group, but the evidence for this outcome was also assessed as very low certainty.  
9 Changes in ulcer size, pressure ulcer severity, cost, and pressure ulcer scale for healing  
10 (PUSH) scores were also reported, but authors were unable to draw conclusions due to the  
11 low certainty of the evidence. One study compared NPWT with a series of gel treatments,  
12 but this study provided no usable data. Another study compared NPWT with 'moist wound  
13 healing', which did not report primary outcome data. Changes in ulcer size and cost were  
14 reported in this study, but evidence was assessed as being of very low certainty; One study  
15 compared NPWT combined with internet-plus home care with standard care, but no  
16 primary outcome data were reported. Changes in ulcer size, pain, and dressing change  
17 times were reported, but evidence was assessed as being of very low certainty. None of the  
18 included studies reported time to complete healing, health-related quality of life, wound  
19 infection, or wound recurrence. Authors concluded that the efficacy, safety, and  
20 acceptability of NPWT in treating pressure ulcers compared to usual care are uncertain due  
21 to the lack of key data on complete wound healing, adverse events, time to complete  
22 healing, and cost-effectiveness. Compared with usual care, using NPWT may speed up the  
23 reduction of pressure ulcer size and severity of pressure ulcer, reduce pain, and dressing  
24 change times. Still, trials were small, poorly described, had short follow-up times, and with  
25 a high risk of bias; any conclusions drawn from the current evidence should be interpreted  
26 with considerable caution. In the future, high-quality research with large sample sizes and  
27 low risk of bias is still needed to further verify the efficacy, safety, and cost-effectiveness  
28 of NPWT in the treatment of pressure ulcers. Future researchers need to recognize the  
29 importance of complete and accurate reporting of clinically important outcomes such as  
30 the complete healing rate, healing time, and adverse events.

31  
32 Horn et al. (2023) examined the use of negative pressure wound therapy for the treatment  
33 of venous leg ulcers (VLU). Authors report that NPWT is underrecognized as a useful  
34 adjunct in the management of VLUs. The literature has shown NPWT to be beneficial by  
35 primarily reducing wound area while promoting granulation tissue formation; thus, this  
36 therapy is a valuable adjunct in preparing the wound for either a cellular and tissue-based  
37 therapy and, more notably, for Split-Thickness Skin Grafts (STSG). This is likely  
38 especially true for large VLUs. Although what is considered large may be somewhat  
39 arbitrary, it appears that the benefit of NPWT increases with wound size. Management of  
40 fluid and drainage appears to be a secondary reason to use NPWT. Most clinicians who  
41 treat VLUs with adjunctive NPWT use it in conjunction with multilayer compression. It is  
42 well recognized that increasing venous return with multilayer compression is mandatory

1 for good ulcer healing. Thus, in any setting other than the inpatient hospital setting, for  
2 most clinicians adjunctive NPWT is best used in addition to compressive dressing when  
3 treating VLUs.

4  
5 Onderková et al. (2023) aimed to systematically review NPWT effectiveness, safety, and  
6 comparative efficacy for head and neck wound healing. Thirty-one studies from a  
7 systematic literature search were identified and analyzed for wound healing response,  
8 overall success rate, improvements compared to conventional wound care, and variation in  
9 pressure settings, treatment lengths, and dressing change frequency. NPWT showed  
10 enhanced outcomes across diverse head and neck wounds, particularly complex post-  
11 reconstructive wounds, and severe infections. Despite the predominantly case report/series  
12 evidence and lack of standardized NPWT protocols, its benefits over conventional care  
13 were clear. NPWT emerges as a promising approach for head and neck wound  
14 management, potentially improving patient outcomes and reducing complications. More  
15 randomized controlled trials are needed to solidify the evidence and standardize NPWT  
16 application protocols.

17  
18 Chen et al. (2024) updated the 2019 IWGDF evidence-based guideline on wound healing  
19 interventions to promote healing of foot ulcers in persons with diabetes. Each  
20 recommendation is based on the evidence found in the systematic review and, using the  
21 GRADE summary of judgement items, including desirable and undesirable effects,  
22 certainty of evidence, patient values, resources required, cost effectiveness, equity,  
23 feasibility, and acceptability, recommendations were formulated that were agreed by the  
24 authors and reviewed by independent experts and stakeholders. Authors made a number of  
25 conditional supportive recommendations for the use of interventions to improve healing of  
26 foot ulcers in people with diabetes. These include the use of sucrose octasulfate dressings,  
27 the use of negative pressure wound therapies for post-operative wounds, the use of  
28 placental-derived products, the use of the autologous leucocyte/platelet/fibrin patch, the  
29 use of topical oxygen therapy, and the use of hyperbaric oxygen. Although in all cases it  
30 was stressed that these should be used where best standard of care was not able to heal the  
31 wound alone and where resources were available for the interventions.

32  
33 Wu et al. (2024) investigated the efficacy and safety of extracorporeal shockwave therapy  
34 (ESWT) for DFUs. A total of 10 RCTs with moderate methodological quality were  
35 included for data analysis. The findings showed that ESWT was significantly associated  
36 with significantly complete healed ulcers and lower rate of unchanged ulcers compared to  
37 controls. Subgroup analysis further revealed that ESWT was better than both hyperbaric  
38 oxygen therapy (HOT) and the standard of care (SOC). Moreover, ESWT also significantly  
39 improved the average transcutaneous partial oxygen pressure. However, the rate of  $\geq 50\%$   
40 improved ulcers and treatment-emergent adverse events were not significantly different  
41 between the ESWT and controls. Authors concluded that ESWT has shown promising  
42 efficacy and a favorable safety profile in the treatment of DFUs.

## 1      **Systemic Hyperbaric Oxygen Therapy (HBOT)**

2      Systemic hyperbaric oxygen therapy (HBOT) involves the inhalation of pure oxygen gas  
3      while enclosed in a high-pressure chamber (defined as pressure greater than standard  
4      atmospheric pressure). The pressures used are usually between 1.4 to 3.0 atmospheres  
5      absolute (atm abs or ATA). The therapy works by supersaturating the blood tissues with  
6      oxygen via increased atmospheric pressure as well as increased oxygen concentrations.  
7      Studies have demonstrated that this therapy increases the available oxygen to the body by  
8      10 to 20 times normal levels. Treatment may be carried out in either a mono-place chamber  
9      pressurized with pure oxygen or in a larger, multi-place chamber pressurized with  
10     compressed air, in which case the individual receives pure oxygen by mask, head tent, or  
11     endotracheal tube. The number and duration of treatment sessions and the atmospheric  
12     pressure during treatment varies depending on the specific condition being treated, the  
13     severity of the condition, and the procedures developed by individual hospitals and clinics.  
14     These individual procedures vary widely and have made the evaluation of the efficacy of  
15     hyperbaric oxygen therapy difficult. However, the medical specialty society which  
16     represents the physicians who specialize in this type of medical treatment, called the  
17     Undersea and Hyperbaric Medical Society (UHMS), created treatment recommendations  
18     for a wide variety of conditions for which HBOT has been proven to provide significant  
19     benefits.

20  
21     The position regarding systemic hyperbaric oxygen is based on guidelines published by the  
22     Undersea and Hyperbaric Medical Society (2008). These guidelines provide  
23     recommendations for indications where hyperbaric oxygen therapy has been demonstrated  
24     to provide clinical benefits, and where there is adequate data to provide guidance regarding  
25     treatment duration, frequency, and depth of pressurization.

26  
27     Lalieu et al. (2021) completed a retrospective, single-center cohort study between 2013 and  
28     2019. All patients with a venous leg ulcer (VLU) from an outpatient clinic providing HBOT  
29     and wound care were included. The primary outcome measure was wound healing,  
30     determined at discharge from the center. Other outcome measures were improvement in  
31     patient related outcome measures (PROMs), as assessed by the EQ-5D-3L questionnaire  
32     and including quality of life (QoL) and pain score. Fifty patients were included, 53%  
33     female, with a mean age of 73.4 ( $\pm 12.2$ ). Most wounds (83%) had existed longer than 3  
34     months before starting treatment. Patients received an average of 43 ( $\pm 20$ ) sessions of  
35     HBOT. After treatment, 37 patients (63%) achieved complete or near-complete wound  
36     healing. Wound size decreased from a median of 14 cm<sup>2</sup> to 0.5 cm<sup>2</sup>, a median decrease of  
37     7.5 cm<sup>2</sup> (94%). Patients mostly reported improvement for all health aspects on the  
38     questionnaire. Pain score decreased from 5.7 ( $\pm 2.5$ ) to 2.1 ( $\pm 2.2$ ) and health score increased  
39     from 57.2 ( $\pm 15.6$ ) to 69.9 ( $\pm 18.9$ ). Authors concluded that patients with non-healing VLUs  
40     may benefit from HBOT to achieve complete or substantial wound healing. They  
41     recommend a well-designed randomized clinical trial with several patients allowing

1 enough statistical power, and of a reasonable duration, to establish the potential of  
2 additional HBOT on hard-to-heal venous ulcers.

3  
4 It is critical that interventions used to enhance the healing of chronic foot ulcers in diabetes  
5 are backed by high-quality evidence and cost-effectiveness. In previous years, the  
6 systematic review accompanying guidelines published by the International Working Group  
7 of the Diabetic Foot performed 4-yearly updates of previous searches, including trials of  
8 prospective, cross-sectional, and case-control design. Due to a need to re-evaluate older  
9 studies against newer standards of reporting and assessment of risk of bias, Chen et al.  
10 (2024) performed a whole new search from conception but limiting studies to randomized  
11 control trials only. The literature search identified 22,250 articles, of which 262 were  
12 selected for full text review across 10 categories of interventions. Overall, the certainty of  
13 evidence for a majority of wound healing interventions was low or very low, with moderate  
14 evidence existing for two interventions (sucrose-octasulfate and leucocyte, platelet and  
15 fibrin patch) and low-quality evidence for a further four (hyperbaric oxygen, topical  
16 oxygen, placental derived products and negative pressure wound therapy). The majority of  
17 interventions had insufficient evidence. Overall, the evidence to support any other  
18 intervention to enhance wound healing is lacking and further high-quality randomized  
19 control trials are encouraged.

20  
21 Lalieu et al. (2023) analyzed wound healing results of hyperbaric oxygen therapy (HBOT)  
22 for a variety of different wound types. This retrospective cohort study included all patients  
23 treated with HBOT and wound care at a single hyperbaric center between January 2017  
24 and December 2020. The primary outcome was wound healing. Secondary outcome  
25 measures were quality of life (QoL), number of sessions, adverse effects, and treatment  
26 cost. Investigators also examined possible influencing factors, including age, sex, type and  
27 duration of wound, socioeconomic status, smoking status, and presence of peripheral  
28 vascular disease. A total of 774 treatment series were recorded, with a median of 39  
29 sessions per patient. In total, 472 wounds (61.0%) healed, 177 (22.9%) partially healed, 41  
30 (5.3%) deteriorated, and 39 (5.0%) minor and 45 (5.8%) major amputations were  
31 performed. Following HBOT, median wound surface area decreased from 4.4 cm<sup>2</sup> to 0.2  
32 cm<sup>2</sup>, and patient QoL improved from 60 to 75 on a 100-point scale. Frequently recorded  
33 adverse effects were fatigue, hyperoxic myopia, and middle ear barotrauma. Attending  
34 fewer than 30 sessions and having severe arterial disease were both associated with a  
35 negative outcome. Authors concluded that adding HBOT to standard wound care increases  
36 wound healing and QoL in selected wounds. Patients with severe arterial disease should be  
37 screened for potential benefits. Most reported adverse effects are mild and transient.

38  
39 Kwee et al. (2024) evaluated the effectiveness of hyperbaric oxygen therapy in the  
40 management of severe lower limb soft tissue injuries. In total 7 studies met the inclusion  
41 criteria, involving 229 patients. The studies included 2 randomized clinical trials, 1  
42 retrospective cohort study, 3 case series and 1 case report. The randomized placebo-

1 controlled clinical trial showed a significant increase in wound healing and decrease in the  
2 need for additional surgical interventions in the patient group receiving hyperbaric oxygen  
3 therapy when compared to those undergoing sham therapy. The randomized non-placebo-  
4 controlled clinical trial revealed that early hyperbaric oxygen therapy reduces tissue  
5 necrosis and the likelihood of long-term complications. The retrospective cohort study  
6 indicated that hyperbaric oxygen therapy effectively reduces infection rates and the need  
7 for additional surgical interventions. The case series and case report presented beneficial  
8 results with regard to wound healing when hyperbaric oxygen therapy was added to the  
9 treatment regimen. Authors concluded that hyperbaric oxygen therapy is generally  
10 considered a safe therapeutic intervention and seems to have a beneficial effect on wound  
11 healing in severe lower limb soft tissue injuries when implemented as an addition to  
12 standard trauma care.

13  
14 Ogbeide et al. (2024) summarized the current management principles and the development  
15 of new approaches to care in a narrative review. Authors noted that the management of  
16 DFUs has significantly advanced over time, with a clear trend toward a compact, patient-  
17 centered, multidisciplinary approach. Optimal glycemic control, infection control, pressure  
18 redistribution, re-vascularization, wound care, and debridement remain key to preventing  
19 and managing DFUs. Emerging trends like hyperbaric oxygen therapy, negative wound  
20 pressure therapy, skin substitutes, and growth factor therapy are promising, and there is a  
21 need for further randomized and observational studies.

22  
23 Damineni et al. (2025) assessed the primary clinical evidence supporting hyperbaric  
24 oxygen therapy (HBOT) in the management of DFUs. Six studies with a total of 391  
25 patients were included in the final analysis, after applying relevant inclusion and exclusion  
26 criteria. The majority of the studies indicated reduced major amputation rates, improved  
27 ulcer healing rates, and decreased ulcer size and depth with HBOT compared to standard  
28 care (SC). Most studies indicate that HBOT leads to lower rates of major amputations,  
29 better ulcer healing, and reduced ulcer dimensions than SC. However, one study found no  
30 significant differences in amputation rates or long-term wound healing between groups.  
31 While most studies showed a low risk of bias in certain areas, moderate-to-high bias in key  
32 aspects necessitated careful interpretation. Future high-quality RCTs with stringent  
33 blinding, standardized protocols, and defined patient selection criteria are crucial to  
34 confirm the effectiveness of HBOT, improve guidelines, and establish its long-term  
35 viability. Although this review suggests that HBOT may be valuable for DFUs, additional  
36 rigorous research is needed to reduce bias, enhance methodological consistency, and  
37 improve the reliability of the findings for clinical implementation.

38  
39 **Undersea and Hyperbaric Medical Society Guidelines**  
40 The Undersea and Hyperbaric Medical Society's (UHMS) 2008 Hyperbaric Oxygen  
41 Therapy Committee suggests utilization of systemic hyperbaric oxygen therapy  
42 pressurization or 'HBOT' guidelines as described below regarding wound care:

1 Arterial Insufficiencies – Treatment varies depending upon the severity of the condition  
2 and the type of chamber used. In large multi-place chambers, treatments delivered between  
3 2.0 and 2.5 ATA of oxygen for 90-120 minutes once or twice daily is standard. In mono-  
4 place chambers, treatment at 2.0 ATA of oxygen for 90-120 minutes once or twice daily is  
5 standard. Once the patient is stabilized, once daily treatment is recommended. Details of  
6 specific conditions are below:

- 7 a. Diabetic lower extremity wounds
  - 8     ○ Patient with type 1 or type 2 diabetes with lower extremity wound due to  
9        diabetes; and
  - 10     ○ Wegner grade III or higher wound severity; and
  - 11     ○ Patient has failed an adequate course of standard wound therapy (defined as  
12        30 days of standard treatment including assessment and correction of  
13        vascular abnormalities, optimization of nutritional status and glucose  
14        control, debridement, moist wound dressing, off-loading, and treatment of  
15        infection; and
  - 16     ○ Re-evaluations at 30 days must show continued progress.
- 17 b. Arterial insufficiency ulcers – May benefit patients who have persistent hypoxia  
18        despite attempts at increasing blood flow or when wound failure continues despite  
19        maximum revascularization.
- 20 c. Pressure ulcers – Not recommended for the routine treatment of decubitus ulcers.  
21        May be necessary for support of skin flaps and grafts showing evidence of ischemic  
22        failure, when the ulcer develops in the field of previous irradiated area for pelvic or  
23        perineal malignancies, or when progressive necrotizing soft tissue infection or  
24        refractory osteomyelitis is present.
- 25 d. Venous stasis ulcers – May be required to support skin grafting in patients with  
26        concomitant peripheral arterial occlusive disease and hypoxia not corrected by  
27        control of edema.

28  
29 Stoekenbroek et al. (2014) completed a systematic review of randomized clinical trials  
30 (RCTs) to assess the additional value of hyperbaric oxygen therapy (HBOT) in promoting  
31 the healing of diabetic foot ulcers and preventing amputations was performed. Eligible  
32 studies reported the effectiveness of adjunctive HBOT with regard to wound healing,  
33 amputations, and additional interventions. Seven of the 669 identified articles met the  
34 inclusion criteria, comprising 376 patients. Authors concluded that current evidence shows  
35 some evidence of the effectiveness of HBOT in improving the healing of diabetic leg ulcers  
36 in patients with concomitant ischemia. Larger trials of higher quality are needed before  
37 implementation of HBOT in routine clinical practice in patients with diabetic foot ulcers  
38 can be justified. A Cochrane Review (2015) by Kranke et al. assessed the benefits and  
39 harms of adjunctive HBOT for treating chronic ulcers of the lower limb. Randomized  
40 controlled trials (RCTs) comparing the effect on chronic wound healing of therapeutic  
41 regimens which include HBOT with those that exclude HBOT (with or without sham  
42 therapy). Twelve trials (577 participants) were included. In people with foot ulcers due to

1 diabetes, HBOT significantly improved the ulcers healed in the short term but not the long  
2 term and the trials had various flaws in design and/or reporting that means we are not  
3 confident in the results. More trials are needed to properly evaluate HBOT in people with  
4 chronic wounds; these trials must be adequately powered and designed to minimize bias.  
5 Kumar et al. (2020) evaluated the efficacy of hyperbaric oxygen therapy (HBOT) as an  
6 adjuvant to standard therapy for treatment of diabetic foot ulcers. A total of 54 patients  
7 with diabetic foot ulcer of Wagner grade II-IV were recruited in this prospective,  
8 randomized, double blind study. Patients were randomized to receive HBOT along with  
9 standard therapy (group H;  $n = 28$ ) or standard therapy alone (group S;  $n = 26$ ). Patients  
10 were given 6 sessions per week for 6 weeks and followed up for 1 year. Outcomes were  
11 measured in terms of healing, and need for amputation, grafting or debridement. The  
12 diabetic ulcers in 78% patients in Group H completely healed without any surgical  
13 intervention while no patient in group S healed without surgical intervention. 2 patients in  
14 group H required distal amputation while in Group S, three patients underwent proximal  
15 amputation. Authors concluded that hyperbaric oxygen therapy is a useful adjuvant to  
16 standard therapy and is a better treatment modality if combined with standard treatment  
17 rather than standard treatment alone for management of diabetic foot ulcers.  
18

19 Dauwe et al. (2014) completed a systematic review on whether hyperbaric oxygen therapy  
20 works in facilitating acute wound healing given that the majority of the literature supports  
21 its use for chronic wounds. A total of eight studies were found to meet criteria for  
22 evaluation of adjunctive hyperbaric oxygen therapy in the treatment of complicated acute  
23 wounds, flaps, and grafts. Authors concluded that when combined with standard wound  
24 management principles, hyperbaric oxygen therapy can augment healing in complicated  
25 acute wounds. However, it is not indicated in normal wound management. Further  
26 investigation is required before it can be recommended as a mainstay in adjuvant wound  
27 therapy.  
28

## 29 **Wound Dressings**

30 Application of wound dressing continues to be the standard of care for wound treatment;  
31 however, the literature is inconclusive as it relates to standardized topical preparations and  
32 types of dressings. Palfreyman et al. (2007) completed a Cochrane review and meta-  
33 analysis on dressings for venous leg ulcers. Dressing wounds is standard care. However,  
34 there are different types of dressings that may improve healing. The authors reviewed all  
35 randomized controlled trials (RCTs) that evaluated dressings applied to venous leg ulcers.  
36 Two hundred and fifty-four studies were discovered but only 42 of these fulfilled inclusion  
37 criteria. Findings suggest that hydrocolloids were no more effective than simple low  
38 adherent dressings used beneath compression. No other comparisons could be stated due  
39 to insufficient evidence. Overall, no particular class or type of dressing appeared to be  
40 better from a healing perspective than any other. According to the authors, determining  
41 which dressing to apply should be based on local costs and preference of patient and  
42 practitioner.

1 Roehrs et al. (2023) evaluated the effects of hyaluronic acid (and its derivatives) on the  
2 healing of chronic wounds. Authors included randomized controlled trials that compared  
3 the effects of hyaluronic acid (as a dressing or topical agent) with other dressings on the  
4 healing of pressure, venous, arterial, or mixed-etiology ulcers and foot ulcers in people  
5 with diabetes. Twelve trials (13 articles) were included in a qualitative synthesis, and four  
6 trials in a quantitative analysis were combined. Overall, the included trials involved 1108  
7 participants (mean age 69.60 years) presenting 178 pressure ulcers, 54 diabetic foot ulcers,  
8 and 896 leg ulcers. Sex was reported for 1022 participants (57.24% female). Pressure  
9 ulcers: It is uncertain whether there is a difference in complete healing; change in ulcer  
10 size; or adverse events (none reported) between platelet-rich growth factor (PRGF) +  
11 hyaluronic acid and PRGF because the certainty of evidence is very low (1 trial, 65  
12 participants). It is also uncertain whether there is a difference in complete healing between  
13 lysine hyaluronate and sodium hyaluronate because the certainty of evidence is very low.  
14 Foot ulcers in people with diabetes It is uncertain whether there is a difference in time to  
15 complete healing between hyaluronic acid and lyophilized collagen because the certainty  
16 of evidence is very low. It is uncertain whether there is a difference in complete ulcer  
17 healing or change in ulcer size between hyaluronic acid and conventional dressings because  
18 the certainty of evidence is very low. Leg ulcers: Authors are uncertain whether there is a  
19 difference in complete wound healing, percentage of adverse events, pain, or change in  
20 ulcer size between hyaluronic acid + hydrocolloid and hydrocolloid because the certainty  
21 of evidence is very low (1 study, 125 participants). It is uncertain whether there is a  
22 difference in change in ulcer size between hyaluronic acid and hydrocolloid because the  
23 certainty of evidence is very low. Authors are uncertain whether there is a difference in  
24 complete wound healing between hyaluronic acid and paraffin gauze because the certainty  
25 of evidence is very low. When compared with neutral vehicle, hyaluronic acid probably  
26 improves complete ulcer healing (4 studies, 526 participants; moderate-certainty  
27 evidence); may slightly increase the reduction in pain from baseline (3 studies, 337  
28 participants); and may slightly increase change in ulcer size, measured as mean reduction  
29 from baseline to 45 days (2 studies, 190 participants). It is uncertain if hyaluronic acid  
30 alters incidence of infection when compared with neutral vehicle (3 studies, 425  
31 participants). Authors are uncertain whether there is a difference in change in ulcer size  
32 (cm<sup>2</sup>) between hyaluronic acid and dextranomer because the certainty of evidence is very  
33 low (1 study, 50 participants). The authors downgraded the certainty of evidence due to risk  
34 of bias or imprecision, or both, for all of the above comparisons. No trial reported health-  
35 related quality of life or wound recurrence. Measurement of change in ulcer size was not  
36 homogeneous among studies, and missing data precluded further analysis for some  
37 comparisons. Authors concluded that there is currently insufficient evidence to determine  
38 the effectiveness of hyaluronic acid dressings in the healing of pressure ulcers or foot ulcers  
39 in people with diabetes. Authors found evidence that hyaluronic acid probably improves  
40 complete ulcer healing and may slightly decrease pain and increase change in ulcer size  
41 when compared with neutral vehicle. Future research into the effects of hyaluronic acid in

1 the healing of chronic wounds should consider higher sample size and blinding to minimize  
2 bias and improve the quality of evidence.

3

#### 4 PRACTITIONER SCOPE AND TRAINING

5 Practitioners should practice only in the areas in which they are competent based on their  
6 education, training, and experience. Levels of education, experience, and proficiency may  
7 vary among individual practitioners. It is ethically and legally incumbent on a practitioner  
8 to determine where they have the knowledge and skills necessary to perform such services  
9 and whether the services are within their scope of practice.

10

11 It is best practice for the practitioner to appropriately render services to a member only if  
12 they are trained, equally skilled, and adequately competent to deliver a service compared  
13 to others trained to perform the same procedure. If the service would be most competently  
14 delivered by another health care practitioner who has more skill and training, it would be  
15 best practice to refer the member to the more expert practitioner.

16

17 Best practice can be defined as a clinical, scientific, or professional technique, method, or  
18 process that is typically evidence-based and consensus driven and is recognized by a  
19 majority of professionals in a particular field as more effective at delivering a particular  
20 outcome than any other practice (Joint Commission International Accreditation Standards  
21 for Hospitals, 2020).

22

23 Depending on the practitioner's scope of practice, training, and experience, a member's  
24 condition and/or symptoms during examination or the course of treatment may indicate the  
25 need for referral to another practitioner or even emergency care. In such cases it is prudent  
26 for the practitioner to refer the member for appropriate co-management (e.g., to their  
27 primary care physician) or if immediate emergency care is warranted, to contact 911 as  
28 appropriate. See the *Managing Medical Emergencies (CPG 159 – S)* policy for  
29 information.

30

31 **REFERENCES**

32 Agency for Health Care Research and Quality (AHRQ). Samson D, Lefevre, F and  
33 Aronson N, Assessment Wound-Healing Technologies: Low-Level laser and Vacuum-  
34 Assisted Closure Evidence Report/Technology, Report 111. AHRQ Publication No.  
35 05-E005-2. Rockville MD, December 2004

36

37 Agency for Health Care Research and Quality (AHRQ). Negative pressure wound therapy  
38 devices. AHRQ Technology assessment report July 29, 2009. Rockville MD. Retrieved  
39 on April 29, 2025 from [https://archive.ahrq.gov/research/findings/ta/negative-pressure-wound-therapy.pdf](https://archive.ahrq.gov/research/findings/ta/negative-pressure-wound-therapy/negative-pressure-wound-therapy.pdf)

1 American Diabetes Association. Consensus Development Conference on diabetic foot  
 2 wound care. *Diabetes Care*. 1999;22:1354-1360

3

4 American Medical Association. (current year). *Current Procedural Terminology (CPT)*  
 5 *Current year* (rev. ed.). Chicago: AMA

6

7 American Medical Association (current year). HCPCS Level II. American Medical  
 8 Association

9

10 American Medical Association. (current year). ICD-10-CM. American Medical  
 11 Association.

12 APTA Guide to Physical Therapist Practice 4.0. American Physical Therapy Association.  
 13 Published 2023. Accessed [April 29, 2025]. <https://guide.apta.org>

14

15 Armstrong DG, Galiano RD, Orgill DP, et al. Multi-centre prospective randomised  
 16 controlled clinical trial to evaluate a bioactive split thickness skin allograft vs standard  
 17 of care in the treatment of diabetic foot ulcers. *International Wound Journal*.  
 18 2022;19(4):932-944

19

20 Armstrong D, Orgill D, Galiano R, et al. A purified reconstituted bilayer matrix shows  
 21 improved outcomes in treatment of non-healing diabetic foot ulcers when compared to  
 22 the standard of care: Final results and analysis of a prospective, randomized, controlled,  
 23 multi-centre clinical trial. *International Wound Journal*. 2024;21(4):e14882

24

25 Avendaño-Coy J, López-Muñoz P, Serrano-Muñoz D, Comino-Suárez N, Avendaño-  
 26 López C, Martín-Espinosa N. Electrical microcurrent stimulation therapy for wound  
 27 healing: A meta-analysis of randomized clinical trials [published online ahead of print,  
 28 2021 Dec 4]. *J Tissue Viability*. 2021;S0965-206X(21)00132-7

29

30 Aziz Z, Cullum N, Flemming K. Electromagnetic therapy for treating venous leg ulcers.  
 31 Cochrane Database of Systematic Reviews 2013, Issue 2. Art. No.: CD002933. DOI:  
 32 10.1002/14651858.CD002933.pub5

33

34 Banerjee J, Lasiter A, Nherera L. Systematic review of cellular, acellular and matrix-like  
 35 products (CAMPs) and indirect treatment comparison between cellular/acellular and  
 36 amniotic/non-amniotic grafts in the management of diabetic foot ulcers. *Advances in  
 37 Wound Care*. 2024(ja)

38

39 Baranski S, Ayello EA. *Wound Care Essentials: Practice Principles* 2nd Edition  
 40 Philadelphia PA Lippincott Williams & Wilkins 2008

1 Barnes R, Shahin Y, Gohil R, Chetter I. Electrical stimulation vs. standard care for chronic  
 2 ulcer healing: a systematic review and meta-analysis of randomised controlled trials.  
 3 Eur J Clin Invest. 2014 Apr;44(4) :429-40

4

5 Barret JP, Dziewulski P, Ramzy PI, et al. Biobrane versus 1% silver sulfadiazine in second-  
 6 degree pediatric burns. Plast Reconstr Surg. 2000;105(1):62-65

7

8 Beckmann KH, Meyer-Hamme G, Schröder S. Low level laser therapy for the treatment of  
 9 diabetic foot ulcers: a critical survey. Evid Based Complement Alternat Med.  
 10 2014;2014:626127

11

12 Beheshti A, Shafigh Y, Parsa H, Zangivand AA. Comparison of high-frequency and MIST  
 13 ultrasound therapy for the healing of venous leg ulcers. Adv Clin Exp Med.2014 Nov-  
 14 Dec;23(6):969-75

15

16 Bello Y, Phillips T, Recent Advances in Wound Healing. *JAMA*. 2000;283(6):716-718

17

18 Black, J., Baharestani, M., Cuddigan, J., Dorner, B., Edsberg, L., Langemo, D. National  
 19 Pressure Ulcer Advisory, P. (2007). National Pressure Ulcer Advisory Panel's updated  
 20 pressure ulcer staging system. *Dermatol Nurs*, 19(4), 343-349; quiz 350

21

22 Bluestein D, Javaheri A. Pressure ulcers: prevention, evaluation, and management. *Am  
 23 Fam Physician*. 2008;78(10):1186-1194

24

25 Blume PA, Walters J, Payne W, Ayala J, Lantis J. Comparison of negative pressure wound  
 26 therapy using vacuum-assisted closure with advanced moist wound therapy in the  
 27 treatment of diabetic foot ulcers: a multicenter randomized controlled trial. *Diabetes  
 28 Care*. 2008 Apr;31(4):631-6. Epub 2007 Dec 27

29

30 Brem H, Kirsner RS, Falanga V. “Protocol for the successful treatment of venous ulcers”.  
 31 (2004) Am. J. Surg. 188 (1A Suppl): 1–8

32

33 Brígido SA, Boc SF, Lopez RC. Effective management of major lower extremity wounds  
 34 using an acellular regenerative tissue matrix: A pilot study. *Orthopedics*. 2004;27(1  
 35 Suppl):s145-s149

36

37 Brölmann FE, Ubbink DT, Nelson EA, Munte K, van der Horst CM, Vermeulen H.  
 38 Evidence-based decisions for local and systemic wound care. *Br J Surg*. 2012  
 39 Sep;99(9):1172-83

40

41 Burns JL, Blackwell SJ. Plastic surgery lower extremity. In: Townsend: Sabiston Textbook  
 42 of Surgery. 19<sup>th</sup> ed. Philadelphia, PA: Saunders Elsevier, 2012. Ch. 64 and 65

1 Cabeza de Vaca, F. G., Macias, A. E., Ramirez, W. A., Munoz, J. M., Alvarez, J. A.,  
2 Mosqueda, J. L., Sifuentes-Osornio, J. (2010). Salvaging diabetic foot through  
3 debridement, pressure alleviation, metabolic control, and antibiotics Cabeza de Vaca  
4 et al. Salvaging diabetic foot. *Wound Repair & Regeneration*, 18(6), 567-571. Doi:  
5 10.1111/j.1524-475X.2010.00621.x  
6

7 Carpenter S F, A, Bahadur D, Estapa A, Bahm J. Evaluating the Number of Cellular or  
8 Tissue-Based Product Applications Required for Treating Diabetic Foot Ulcers and  
9 Venous Leg Ulcers in Non-Hospital Outpatient Department Settings. *WOUNDS*.  
10 2024;35(8)  
11

12 Centers for Medicare and Medicaid. Decision memo for electrostimulation for wounds  
13 (CAG-00068R) In: Medicare Coverage Database. Baltimore, MD: December 2003  
14

15 Centers for Medicare and Medicaid. Local Coverage Determination for Debridement  
16 Services (L33614). Retrieved on April 29, 2025 from [https://www.cms.gov/medicare-coverage-database/details/lcd-  
17 details.aspx?lcid=33614&ver=26&bc=CAAAAAAAA](https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?lcid=33614&ver=26&bc=CAAAAAAAA)  
18

19 Centers for Medicare and Medicaid. Local Coverage Determination (LCD): Outpatient  
20 Physical and Occupational Therapy Services (L33631). Retrieved on April 29, 2025  
21 from [https://www.cms.gov/medicare-coverage-database/details/lcd-  
22 details.aspx?lcid=33631&ver=51&bc=CAAAAAAAA](https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?lcid=33631&ver=51&bc=CAAAAAAAA)  
23

24 Centers for Medicare and Medicaid. Local Coverage Determination (LCD): Surgical  
25 Dressings (L33831). Retrieved on April 29, 2025 from <https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcid=33831&ver=40&bc=CAAAAAAAA>  
26

27 Centers for Medicare and Medicaid Services. Local Coverage Determination (LCD):  
28 Wound Care (L35125). Retrieved on April 29, 2025 from  
29 [https://www.cms.gov/medicare-coverage-database/details/lcd-  
30 details.aspx?lcid=35125&ver=76&bc=CAAAAAAAA](https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?lcid=35125&ver=76&bc=CAAAAAAAA)  
31

32 Centers for Medicare and Medicaid. National Coverage Determination (NCD) for  
33 Hyperbaric Oxygen Therapy (20.29) Retrieved on April 29, 2025 from  
34 [https://www.cms.gov/medicare-coverage-database/details/ncd-  
35 details.aspx?NCDId=12&ncdver=4&DocID=20.29&SearchType=Advanced&bc=IA  
36 AAABAAAAA&  
37](https://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?NCDId=12&ncdver=4&DocID=20.29&SearchType=Advanced&bc=IA)  
38

1 Centers for Medicare and Medicaid. National Coverage Determination (NCD) for  
 2 Treatment of Decubitus Ulcers (270.4). Retrieved on April 29, 2025 from  
 3 [https://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?NCDId=47&ncdver=1&DocID=270.4&ncd\\_id=270.4&ncd\\_version=1&basket=ncd%25253A270%25252E4%25253A1%25253ATreatment+of+Decubitus+Ulcers&bc=gAAAAAgAAAAAAA%3D%3D](https://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?NCDId=47&ncdver=1&DocID=270.4&ncd_id=270.4&ncd_version=1&basket=ncd%25253A270%25252E4%25253A1%25253ATreatment+of+Decubitus+Ulcers&bc=gAAAAAgAAAAAAA%3D%3D)

7

8 Centers for Medicare and Medicaid Services. National Coverage Determination (NCD) for  
 9 Electrical Stimulation (ES) and Electromagnetic Therapy for the Treatment of Wounds  
 10 (270.1). Retrieved on April 29, 2025 from <https://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?NCDId=131&ncdver=3&bc=AAAAAgAAAAAAA&>

13

14 Centers for Medicare and Medicaid Services. Local Coverage Determination (LCD): Skin  
 15 Substitute Grafts/Cellular and Tissue-Based Products for the Treatment of Diabetic  
 16 Foot Ulcers and Venous Leg Ulcers (35041). Retrieved on April 28, 2025 from  
 17 [https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=35041#:~:text=This%20Local%20Coverage%20Termination%20\(LCD,failed%20established%20methods%20of%20healing](https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=35041#:~:text=This%20Local%20Coverage%20Termination%20(LCD,failed%20established%20methods%20of%20healing)

20

21 Chen C, Hou WH, Chan ES, Yeh ML, Lo HL. Phototherapy for treating pressure ulcers.  
 22 Cochrane Database Syst Rev. 2014 Jul 11;(7):CD009224

23

24 Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A,  
 25 Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Guidelines on interventions to  
 26 enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes  
 27 Metab Res Rev. 2024 Mar;40(3):e3644

28

29 Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A,  
 30 Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Effectiveness of interventions to  
 31 enhance healing of chronic foot ulcers in diabetes: A systematic review. Diabetes  
 32 Metab Res Rev. 2024 Mar;40(3):e3786

33

34 Chen AC, Lu Y, Hsieh CY, Chen YS, Chang KC, Chang DH. Advanced Biomaterials and  
 35 Topical Medications for Treating Diabetic Foot Ulcers: A Systematic Review and  
 36 Network Meta-Analysis. Adv Wound Care (New Rochelle). 2024 Feb;13(2):97-113

37

38 Chen HL, Chung JYW, Yan VCM, Wong TKS. Polylactic Acid-Based Biomaterials in  
 39 Wound Healing: A Systematic Review. Adv Skin Wound Care. 2023 Sep 1;36(9):1-8

1 Chen Y, Du P, Lv G. A meta-analysis examined the effect of oxidised regenerated  
 2 cellulose/collagen dressing on the management of chronic skin wounds. *Int Wound J.*  
 3 2023 May;20(5):1544-1551

4

5 Cooper P. A review of different wound types and their principles of management in Wound  
 6 Healing: A systematic approach to advanced wound healing and management. 2005  
 7 Cromwell Press UK

8

9 Cullum N, Nelson EA, Fletcher A, Sheldon T. Compression for venous leg ulcers.  
 10 Cochrane Database Syst Rev 2001;(2):CD000265. ECRI Institute. Hotline

11

12 Damineni U, Divity S, Gundapaneni SRC, Burri RG, Vadde T. Clinical Outcomes of  
 13 Hyperbaric Oxygen Therapy for Diabetic Foot Ulcers: A Systematic Review. *Cureus.*  
 14 2025;17(2):e78655. Published 2025 Feb 6. doi:10.7759/cureus.78655

15

16 Damoiseaux, J. (2013). Bullous skin diseases: classical types of autoimmune diseases.  
 17 *Scientifica (Cairo),* 2013, 457982

18

19 Dauwe PB, Pulikkottil BJ, Lavery L, Stuzin JM, Rohrich RJ. Does hyperbaric oxygen  
 20 therapy work in facilitating acute wound healing: a systematic review. *Plast Reconstr*  
 21 *Surg.* 2014 Feb;133(2):208e-15e

22

23 David G. Armstrong DPO, Robert D. Galiano, Paul M. Glat, Jarrod P. Kaufman, Marissa  
 24 J. Carter, Lawrence A. DiDomenico, Charles M. Zelen, Paul M. Glat, Jarrod P.  
 25 Kaufman, Marissa J. Carter, Lawrence A. DiDomenico, Charles M. Zelen. Use of a  
 26 purified reconstituted bilayer matrix in the management of chronic diabetic foot ulcers  
 27 improves patient outcomes vs standard of care: Results of a prospective randomised  
 28 controlled multi-centre clinical trial. *Int Wound J.* 2022;19(5):1197-1209

29

30 Debridement Procedures for Managing Diabetic Foot Ulcers: A Review of Clinical  
 31 Effectiveness, Cost-effectiveness, and Guidelines. (2014). Ottawa ON: 2014 Canadian  
 32 Agency for Drugs and Technologies in Health

33

34 Dryden, M. S. (2010). Complicated skin and soft tissue infection. *J Antimicrob Chemother,*  
 35 *65 Suppl 3*, iii35-44

36

37 Dumville JC, Deshpande S, O'Meara S, Speak K. Foam dressings for healing diabetic foot  
 38 ulcers. *Cochrane Database of Systematic Reviews* 2013, Issue 6. Art. No.: CD009111

39

40 Dumville JC, Hinchliffe RJ, Cullum N, Game F, Stubbs N, Sweeting M, Peinemann F.  
 41 Negative pressure wound therapy for treating foot wounds in people with diabetes

1 mellitus. Cochrane Database of Systematic Reviews 2013, Issue 10. Art. No.:  
 2 CD010318

3

4 Dumville JC, Keogh SJ, Liu Z, Stubbs N, Walker RM, Fortnam M. Alginate dressings for  
 5 treating pressure ulcers. Cochrane Database Syst Rev. 2015 May 21;5:CD011277

6

7 Dumville JC, O'Meara S, Deshpande S, Speak K. Alginate dressings for healing diabetic  
 8 foot ulcers. Cochrane Database of Systematic Reviews 2013, Issue 6. Art. No.:  
 9 CD009110

10

11 Dumville JC, O'Meara S, Deshpande S, Speak K. Hydrogel dressings for healing diabetic  
 12 foot ulcers. Cochrane Database of Systematic Reviews 2013, Issue 7. Art. No.:  
 13 CD009101

14

15 Dumville JC, Webster J, Evans D, Land L. Negative pressure wound therapy for treating  
 16 pressure ulcers. Cochrane Database Syst Rev. 2015 May 21;5:CD011334

17

18 Dumville JC, Stubbs N, Keogh SJ, Walker RM, Liu Z. Hydrogel dressings for treating  
 19 pressure ulcers. Cochrane Database Syst Rev. 2015 Feb 17;2:CD011226

20

21 Ehrenreich M, Ruszczak Z. Tissue-engineered temporary wound coverings. Important  
 22 options for the clinician. Acta Dermatovenerol Alp Panonica Adriat. 2006;15(1):5-13

23

24 Eleftheriadou I, Samakidou G, Tentolouris A, Papanas N, Tentolouris N.  
 25 Nonpharmacological Management of Diabetic Foot Ulcers: An Update. Int J Low  
 26 Extrem Wounds. 2021;20(3):188-197

27

28 Enero M, van Houtum WH, The value of debridement and Vacuum-Assisted Closure  
 29 (V.A.C.) Therapy in diabetic foot ulcers. Diabetes Metab Res Rev, 2008;May-Jun;24(1)  
 30 Suppl 1):S76-80

31

32 Enoch S and Price P (2004) Cellular, molecular and biochemical differences in the  
 33 pathophysiology of healing between acute wounds, chronic wounds and wounds in the  
 34 aged. Retrieved on April 29, 2025 from  
 35 <http://www.worldwidewounds.com/2004/august/Enoch/Pathophysiology-Of-Healing.html>

36

37

38 Enwemeka CS. Intricacies of dose in laser phototherapy for tissue repair and pain relief,  
 39 Photomed Laser Surg. 2009 Jun; 27(3):387-93

1 Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD. The  
 2 efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study.  
 3 Photomed Laser Surg. 2004 Aug; 22(4):323-9

4

5 ERCI Institute. Electrical Stimulation and Electromagnetic Therapy (AHRQ). Plymouth  
 6 Meeting PA: ERCI Institute Health Technology Assessment Information Service, Dec  
 7 2010. Available at: <http://www.ecri.org>

8

9 ERCI Institute. Negative Pressure Wound Therapy Devices (AHRQ). Rockville, MD:  
 10 ERCI Institute Health Technology Assessment Information Service, July 2009.  
 11 Available at: <http://www.ecri.org>

12

13 Eskes A, Vermeulen H, Lucas C, Ubbink DT. Hyperbaric oxygen therapy for treating acute  
 14 surgical and traumatic wounds. Cochrane Database Syst Rev. 2013 Dec  
 15 16;12:CD008059

16

17 Faglia, E., Clerici, G., Caminiti, M., Quarantiello, A., Gino, M., & Morabito, A. (2006).  
 18 The role of early surgical debridement and revascularization in patients with diabetes  
 19 and deep foot space abscess: retrospective review of 106 patients with diabetes. *Journal*  
 20 *of Foot & Ankle Surgery*, 45(4), 220-226

21

22 Feedar JA, Kloth LC, Gentzkow, GD. Chronic Dermal Ulcer Healing Enhanced with  
 23 Monophasic Pulsed Electrical Stimulation Phys Ther 1991;71:639-649

24

25 Fernandez-Chimeno M, Houghton P, Holey L. Electrical stimulation for chronic wounds  
 26 (Cochrane Review). Intervention Protocol. In: The Cochrane Library, Issue I, 2004.  
 27 Oxford: Update Software

28

29 Fisher, T. K., Scimeca, C. L., Bharara, M., Mills, J. L., Sr., & Armstrong, D. G. (2010). A  
 30 step-wise approach for surgical management of diabetic foot infections. J Vasc Surg,  
 31 52(3 Suppl), 72S-75S

32

33 Fletcher A, Cullum N, Sheldon TA. A systematic review of compression treatment for  
 34 venous leg ulcers. BMJ 1997;315:576-80

35

36 Flanagan, M. (1997) A practical framework for wound assessment 2: methods. British  
 37 Journal of Nursing: 6; 6, 8 – 11

38

39 Flanagan, M. (1994) Assessment Criteria. Nursing Times: 90; 35, 76 – 86

1 Foster K, Greenhalgh D, Gamelli R et al; FS 4IU VH S/D Clinical Study Group. Efficacy  
 2 and safety of a fibrin sealant for adherence of autologous skin grafts to burn wounds:  
 3 Results of a phase 3 clinical study. *J Burn Care Res.* 2008;29(2):293-303

4

5 Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, Löndahl  
 6 M, Price PE, Jeffcoate WJ. A systematic review of interventions to enhance the healing  
 7 of chronic ulcers of the foot in diabetes. *Diabetes Metab Res Rev.* 2012 Feb;28 Suppl  
 8 1:119-41

9

10 Gibbons GW, Orgill DP, Serena TE, et al. A prospective, randomized, controlled trial  
 11 comparing the effects of noncontact, low-frequency ultrasound to standard care in  
 12 healing venous leg ulcers. *Ostomy Wound Manage.* 2015;61(1):16-29

13

14 Gillespie BM, Thalib L, Ellwood D, et al. Effect of negative-pressure wound therapy on  
 15 wound complications in obese women after caesarean birth: a systematic review and  
 16 meta-analysis. *BJOG.* 2022;129(2):196-207

17

18 Greer N, Foman NA, MacDonald R, et al. Advanced wound care therapies for nonhealing  
 19 diabetic, venous, and arterial ulcers: A systematic review. *Ann Intern Med.*  
 20 2013;159(8):532-542

21

22 Guo S, DiPietro LA. Factors Affecting Wound Healing, *J Dent Res* 2010;89(3):219-229

23

24 Guo X, Mu D, Gao F. Efficacy and safety of acellular dermal matrix in diabetic foot ulcer  
 25 treatment: a systematic review and meta-analysis. *International Journal of Surgery.*  
 26 2017;40:1-7

27

28 Gurtner G, Garcia, AD, Bakewell, K, Alarcon, JB. A retrospective matched-cohort study  
 29 of 3994 lower extremity wounds of multiple etiologies across 644 institutions  
 30 comparing a bioactive human skin allograft, TheraSkin, plus standard of care, to  
 31 standard of care alone. *International Wound Journal.* 2020;17(1):55-64

32

33 Harding K, Sumner M, Cardinal M. A prospective, multicentre, randomised controlled  
 34 study of human fibroblast-derived dermal substitute (Dermagraft) in patients with  
 35 venous leg ulcers. *Int Wound J.* 2013;10(2):132-137

36

37 Haycocks, S., & Chadwick, P. (2012). Debridement of diabetic foot wounds. *Nursing  
 38 Standard,* 26(24), 51-51-52, 54, 56 passim

39

40 Ho C, Bogie K. Pressure Ulcers. In: Frontera W, Silver J, Rizzo, T: *Essentials of Physical  
 41 Medicine and Rehabilitation: musculoskeletal disorders, pain and rehabilitation.* 2<sup>nd</sup> ed.  
 42 Philadelphia, PA: Saunders Elsevier, 2008. Ch. 140

1 Holloway GA, Arterial ulcers: assessment and diagnosis. *Ostomy Wound Manage.* 1996  
2 Apr;42(3):46-8, 50-1

3

4 Hopf HW, Ueno C, Aslam R, Burnand K, Fife C, and Grant L. et al. Guidelines for the  
5 treatment of arterial insufficiency ulcers. *Wound Repair Regen.* 2006 Nov-  
6 Dec;14(6):693-710

7

8 Hopkins JT, McLoda TA, Seegmiller JG, Baxter D, Low-Level Laser Therapy Facilitates  
9 Superficial Wound healing in Humans: a triple-blind, sham-controlled study. *J Athletic  
10 Training* 2004;339(3):223-229

11

12 Horn C, Fierro A, Lantis Ii JC. Use of negative pressure wound therapy for the treatment  
13 of venous leg ulcers. *Wounds.* 2023 Jun;35(6):117-125

14

15 Houghton PE, Kincaid CB, Lovell M, Campbell KE, Keast DH, Woodbury G, and Harris  
16 K. Effect of Electrical Stimulation on Chronic Leg Ulcer Size and Appearance. *Phys  
17 Ther,* 2003;83:17-28

18

19 Irion G *Comprehensive Wound Management* 2nd Edition, Thorofare, NJ: Slack Inc., 2010

20

21 Joint Commission International. (2020). *Joint Commission International Accreditation  
22 Standards for Hospitals* (7th ed.): Joint Commission Resources

23

24 Joseph E, Hamori CA, Bergman S, Roaf E, Swann NF, Anastasi GW. A prospective,  
25 randomized trial of vacuum-assisted closure versus standard therapy of chronic non-  
26 healing wounds. *Wounds* 2000;12(3):60-7

27

28 Kane, D. (2014). Surgical Management of Pressure Ulcers. In M. D. D. R. Thomas & M.  
29 D. G. A. Compton (Eds.), *Pressure Ulcers in the Aging Population* (Vol. 1, pp. 99-  
30 126): Humana Press

31

32 Kaviani A, et al. A randomized clinical trial on the effect of low-level laser therapy on  
33 chronic diabetic foot wound healing: a preliminary report. *Photomedicine and Laser  
34 Surgery* 2011;29(2):109-14

35

36 Kloth LC, McCulloch JM, Feedar MA *Wound Healing: Alternatives in Management* 2nd  
37 Edition, Philadelphia PA: FA Davis 1995

38

39 Kneisel, A., & Hertl, M. (2011). Autoimmune bullous skin diseases. Part 1: Clinical  
40 manifestations. *J Dtsch Dermatol Ges,* 9(10), 844-856; quiz 857. doi: 10.1111/j.1610-  
41 0387.2011.07793.x

1 Kotronis G, Vas PRJ. Ultrasound Devices to Treat Chronic Wounds: The Current Level of  
 2 Evidence. *Int J Low Extrem Wounds.* 2020 Dec;19(4):341-349. doi:  
 3 10.1177/1534734620946660

4

5 Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE, Weibel S. Hyperbaric  
 6 oxygen therapy for chronic wounds. *Cochrane Database Syst Rev.* 2015 Jun  
 7 24;6:CD004123

8

9 Kujath P, Michelsen A. Wounds from Physiology to Wound Dressing. *Dtsch Arztebl Int*  
 10 2008; 105(13):239-48

11

12 Kumar A, Shukla U, Prabhakar T, Srivastava D. Hyperbaric oxygen therapy as an adjuvant  
 13 to standard therapy in the treatment of diabetic foot ulcers. *J Anaesthesiol Clin*  
 14 *Pharmacol.* 2020 Apr-Jun;36(2):213-218. doi: 10.4103/joacp.JOACP\_94\_19. Epub  
 15 2020 Jun 15

16

17 Kumbhar S, Bhatia M. Advancements and best practices in diabetic foot Care: A  
 18 comprehensive review of global progress. *Diabetes Res Clin Pract.* 2024;217:111845.  
 19 doi:10.1016/j.diabres.2024.111845

20

21 Kwee E, Borgdorff M, Schepers T, et al. Adjunctive hyperbaric oxygen therapy in the  
 22 management of severe lower limb soft tissue injuries: a systematic review. *Eur J*  
 23 *Trauma Emerg Surg.* 2024;50(3):1093-1100. doi:10.1007/s00068-023-02426-2

24

25 Lala D, Spaulding SJ, Burke SM, Houghton PE. Electrical stimulation therapy for the  
 26 treatment of pressure ulcers in individuals with spinal cord injury: a systematic review  
 27 and meta-analysis. *Int Wound J.* 2015 Apr 13

28

29 Lalieu RC, Akkerman I, van Hulst RA. Hyperbaric Oxygen Therapy for Venous Leg  
 30 Ulcers: A 6 Year Retrospective Study of Results of a Single Center. *Front Med*  
 31 (Lausanne). 2021;8:671678. Published 2021 Jul 28

32

33 Lalieu RC, Bol Raap RD, Smit C, Dubois EFL, van Hulst RA. Hyperbaric Oxygen Therapy  
 34 for Nonhealing Wounds-A Long-term Retrospective Cohort Study. *Adv Skin Wound*  
 35 *Care.* 2023 Jun 1;36(6):304-310

36

37 Langer A, Rogowski W. Systematic review of economic evaluations of human cell-derived  
 38 wound care products for the treatment of venous leg and diabetic foot ulcers. *BMC*  
 39 *Health Serv Res.* 2009;9:115

40

41 Lantis J, Lullove, Eric J, Liden, Brock, McEneaney, Patrick, Raphael, Allen, Klein, Robert,  
 42 Winters, Christopher, Huynh, Ruby N. Final efficacy and cost analysis of a fish skin

1 graft vs standard of care in the management of chronic diabetic foot ulcers: a  
 2 prospective, multicenter, randomized controlled clinical trial. *Wounds: a Compendium*  
 3 of Clinical Research and Practice.

4 Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, and Pecoraro RE et al. Definitions  
 5 and Guidelines of Assessment of Wounds and Evaluation of Healing, *Arch Dermatol.*  
 6 Apr 1994;130:489-493

7

8 Lebrun, E., Tomic-Canic, M., & Kirsner, R. S. (2010). The role of surgical debridement in  
 9 healing of diabetic foot ulcers. *Wound Repair Regen.* 18(5), 433-438. doi:  
 10.1111/j.1524-475X.2010.00619.x

11

12 Leclerc F, Puechguiral IR, Rotteleur G, Thomas P, Mordon SR. A prospective  
 13 randomized study of 980 nm diode laser-assisted venous ulcer healing on 34 patients.  
 14 *Wound Repair and Regeneration* 2010;18(6):580-5

15

16 Levine, S. M., Sinno, S., Levine, J. P., & Saadeh, P. B. (2013). Current thoughts for the  
 17 prevention and treatment of pressure ulcers: using the evidence to determine fact or  
 18 fiction. *Ann Surg.* 257(4), 603-608

19

20 Lipsky, B. A., Berendt, A. R., Cornia, P. B., Pile, J. C., Peters, E. J., Armstrong, D. G.  
 21 Infectious Diseases Society of, A. (2012). 2012 Infectious Diseases Society of America  
 22 clinical practice guideline for the diagnosis and treatment of diabetic foot infections.  
 23 *Clin Infect Dis.* 54(12), e132-173

24

25 Liu, C., Bayer, A., Cosgrove, S. E., Daum, R. S., Fridkin, S. K., Gorwitz, R. J., Chambers,  
 26 H. F. (2011). Clinical Practice Guidelines by the Infectious Diseases Society of  
 27 America for the Treatment of Methicillin-Resistant Staphylococcus Aureus Infections  
 28 in Adults and Children. *Clinical Infectious Diseases*

29

30 Lucas C, Coenen CHM, De Haan RJ. The effect of low level laser therapy (LLLT) on stage  
 31 III decubitus ulcers (pressure sores); A prospective randomised single blind,  
 32 multicentre pilot study. *Lasers Med Sci* 2000; 15(2):94-100

33

34 Lucas C, van Gemert MJ, de Haan RJ. Efficacy of low-level laser therapy in the  
 35 management of stage III decubitus ulcers: a prospective, observer-blinded multicentre  
 36 randomised clinical trial. *Lasers Med Sci* 2003; 18(2):72-7

37

38 Lundeberg T, Malm M. Low-power HeNe laser treatment of venous leg ulcers. *Ann Plast  
 39 Surg* 1991; 27(6):537-9

40

1 Machado, N. O. (2011). Necrotizing fasciitis: The importance of early diagnosis, prompt  
2 surgical debridement and adjuvant therapy. *North Am J Med Sci*, 3, 107-118

3

4 Malm M, Lundeberg T. Effect of low power gallium arsenide laser on healing of venous  
5 ulcers. *Scand J Plast Reconstr Surg Hand Surg* 1991; 25(3):249-51

6

7 Mathieu D, Linke J-C, Wattel F (2006). Non-healing wounds. In: Handbook on hyperbaric  
8 medicine, Mathieu DE, editor. Netherlands: Springer, pp.401-427

9

10 Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007). Impaired wound  
11 healing. *Clin Dermatol* 25:19-25

12

13 Mishra A, Kushare A, Gupta MN, Ambre P. Advanced Dressings for Chronic Wound  
14 Management. *ACS Appl Bio Mater.* 2024;7(5):2660-2676.  
15 doi:10.1021/acsabm.4c00138

16

17 Moore ZEH, Cowman S. Wound cleansing for pressure ulcers. *Cochrane Database of  
18 Systematic Reviews* 2013, Issue 3. Art. No.: CD004983

19

20 National Institute for Health and Clinical Excellence (NICE). Overview: Pressure ulcers:  
21 Prevention and management: Guidance. (2014). Retrieved April 29, 2025 from  
22 <http://www.nice.org.uk/guidance/cg179>

23

24 National Pressure Ulcer Advisory Panel. 2014. Treatment of Pressure Ulcers. In:  
25 Prevention and treatment of pressure ulcers: clinical practice guideline. Retrieved on  
26 April 29, 2025 from <https://npiap.com/page/2014Guidelines>

27

28 Norman G, Goh EL, Dumville JC, Shi C, Liu Z, Chiverton L, Stankiewicz M, Reid A.  
29 Negative pressure wound therapy for surgical wounds healing by primary closure.  
30 Cochrane Database Syst Rev. 2020 Jun 15;6(6):CD009261. doi:  
31 10.1002/14651858.CD009261.pub6

32

33 Nussbaum EL, Biemann I, Mustard B. Comparison of ultrasound/ultraviolet-C and laser  
34 for treatment of pressure ulcers in patients with spinal cord injury. *Phys Ther* 1994;  
35 74(9):812-23

36

37 Ogbeide OA, Okeleke SI, Okorie JC, et al. Evolving Trends in the Management of Diabetic  
38 Foot Ulcers: A Narrative Review. *Cureus*. 2024;16(7):e65095. Published 2024 Jul 22.  
39 doi:10.7759/cureus.65095

40

41 O'Meara S, Martyn-St James M. Alginate dressings for venous leg ulcers. *Cochrane  
42 Database of Systematic Reviews* 2013, Issue 4. Art. No.: CD010182

1 O'Meara S, Martyn-St James M. Foam dressings for venous leg ulcers. Cochrane Database  
 2 of Systematic Reviews 2013, Issue 5. Art. No.: CD009907

3

4 O'Meara S, Cullum N, Nelson EA, Dumville JC. Compression for venous leg ulcers.  
 5 Cochrane Database Syst Rev. 2012 Nov 14;11:CD000265

6

7 Onderková A, Butler PEM, Kalavrezos N. The efficacy of negative-pressure wound  
 8 therapy for head and neck wounds: A systematic review and update. Head Neck. 2023  
 9 Dec;45(12):3168-3179

10

11 Ontario Health (Quality) . Skin Substitutes for Adults With Diabetic Foot Ulcers and  
 12 Venous Leg Ulcers: A Health Technology Assessment. Ont Health Technol Assess Ser.  
 13 2021;21(7):1-165. Published 2021 Jun 4

14

15 Olyaie M, Rad FS, Elahifar MA, Garkaz A, Mahsa G. High-frequency and noncontact low-  
 16 frequency ultrasound therapy for venous leg ulcer treatment: a randomized, controlled  
 17 study. Ostomy Wound Manage. 2013 Aug;59(8):14-20

18

19 Ouahes N., Phillips TJ Leg ulcers Curr Probl Dematol. 1995-7:109-142

20

21 Padula WV, Ramanathan S, Cohen BG, Rogan G, Armstrong DG. Comparative  
 22 Effectiveness of Placental Allografts in the Treatment of Diabetic Lower Extremity  
 23 Ulcers and Venous Leg Ulcers in US Medicare Beneficiaries: a retrospective  
 24 observational cohort study using real-world evidence. Advances in Wound Care. 2024

25

26 Palfreymann SJ, Lochiel R, Michaels JA. A systematic review of compression therapy for  
 27 venous leg ulcers. Vasc Med 1998;3:301-13

28

29 Palfreymann SJ, Nelson EA, Michaels JA. Dressings for venous leg ulcers: systematic  
 30 review and meta-analysis. BMJ 2007 Aug 4:335(7613):244

31

32 Pedrazzi NE, Naiken S, La Scala G. Negative Pressure Wound Therapy in Pediatric Burn  
 33 Patients: A Systematic Review. Adv Wound Care (New Rochelle). 2021;10(5):270-  
 34 280

35

36 Pham C, Greenwood J, Cleland H, et al. Bioengineered skin substitutes for the management  
 37 of burns: A systematic review. Burns. 2007;33(8):946-957

38

39 Poh-Fitzpatrick, M., & Junkins-Hopkins, J. M. (2013). Bullous Disease of Diabetes  
 40 Treatment & Management. *Drugs and Diseases*. Retrieved from  
 41 <http://emedicine.medscape.com/article/1062235-treatment>

1 Polak A, Franek A, Blaszcak E, et al. A prospective, randomized, controlled, clinical  
 2 study to evaluate the efficacy of high-frequency ultrasound in the treatment of Stage II  
 3 and Stage III pressure ulcers in geriatric patients. *Ostomy Wound Manage.*  
 4 2014;60(8):16-28

5

6 Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-level laser therapy  
 7 for wound healing: mechanism and efficacy. *Dermatol Surg.* 2005 Mar;31(3):334-40

8

9 Purdue GF, Hunt JL, Still JM Jr, et al. A multicenter clinical trial of a biosynthetic skin  
 10 replacement, Dermagraft-TC, compared with cryopreserved human cadaver skin for  
 11 temporary coverage of excised burn wounds. *J Burn Care Rehabil.* 1997;18(1 Pt 1):52-  
 12 57

13

14 Putri IL, Adzalika LB, Pramanasari R, Wungu CDK. Negative pressure wound therapy  
 15 versus conventional wound care in cancer surgical wounds: A meta-analysis of  
 16 observational studies and randomised controlled trials. *Int Wound J.*  
 17 2022;10.1111/iwj.13756

18

19 Rastogi A, Bhansali A, Ramachandran S. Efficacy and Safety of Low-Frequency,  
 20 Noncontact Airborne Ultrasound Therapy (Glybetac) For Neuropathic Diabetic Foot  
 21 Ulcers: A Randomized, Double-Blind, Sham-Control Study. *Int J Low Extrem  
 22 Wounds.* 2019 Mar;18(1):81-88

23

24 Recio AC, Felter CE, Schneider AC, McDonald JW, High-voltage electrical stimulation  
 25 for the management of stage III and IV pressure ulcers among adults with spinal cord  
 26 injury: demonstration of its utility for recalcitrant wounds below the level of injury. *J  
 27 Spinal Cord Med.* 2012 Jan;35(1):58-63

28

29 Ricco, J. B., Thanh Phong, L., Schneider, F., Illuminati, G., Belmonte, R., Valagier, A., &  
 30 Regnault De La Mothe, G. (2013). The diabetic foot: a review. *J Cardiovasc Surg  
 31 (Torino),* 54(6), 755-762.

32

33 Roehrs H, Stocco JG, Pott F, Blanc G, Meier MJ, Dias FA. Dressings and topical agents  
 34 containing hyaluronic acid for chronic wound healing. *Cochrane Database Syst Rev.*  
 35 2023 Jul 27;7(7):CD012215

36

37 Roje, Z., Roje, Z., Matic, D., Librenjak, D., Dokuzovic, S., & Varvodic, J. (2011).  
 38 Necrotizing fasciitis: literature review of contemporary strategies for diagnosing and  
 39 management with three case reports: torso, abdominal wall, upper and lower limbs.  
*World J Emerg Surg,* 6(1), 46

1 Romanelli M, Dini V, Bertone MS. Randomized comparison of OASIS wound matrix  
 2 versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed  
 3 arterial/venous etiology. *Adv Skin Wound Care*. 2010;23(1):34-38

4

5 Santoianni P, Monfrecola G, Martellotta D, et al. Inadequate effect of helium-neon laser  
 6 on venous leg ulcers. *Photodermatology* 1984;1245-9

7

8 Schunk C, Reed K. Clinical Practice Guideline: Examination and Intervention for  
 9 Rehabilitation, Gaithersburg MD Aspen Publishers, 2000

10

11 Seidel D, Storck M, Lawall H, Wozniak G, Mauckner P, Hochlenert D, Wetzel-Roth W,  
 12 Sonder K, Hahn M, Rothenaicher G, Krönert T, Zink K, Neugebauer E. Negative  
 13 pressure wound therapy compared with standard moist wound care on diabetic foot  
 14 ulcers in real-life clinical practice: results of the German DiaFu-RCT. *BMJ Open*. 2020  
 15 Mar 24;10(3):e026345

16

17 Shahi, N., Bradley, S., Vowden, K., & Vowden, P. (2014). Diabetic bullae: a case series  
 18 and a new model of surgical management. *J Wound Care*, 23(6), 326, 328-330

19

20 Shi J, Gao Y, Tian J, Li J, Xu J, Mei F, Li Z. Negative pressure wound therapy for treating  
 21 pressure ulcers. *Cochrane Database Syst Rev*. 2023 May 26;5(5):CD011334

22

23 Singer AJ, Clark RAF. Cutaneous wound healing. *N Engl J Med*. 1999;341:738-746

24

25 Snyder DL, Sullivan N, Schoelles KM. Skin substitutes for treating chronic wounds.  
 26 Technology Assessment Report. Prepared by the ECRI Institute Evidence-based  
 27 Practice Center (EPC) under contract to the Agency for Healthcare Research and  
 28 Quality (AHRQ), Contract No. HHS-A-290-2007-10063. Project ID: HCPR0610.  
 29 Rockville, MD: AHRQ; December 18, 2012

30

31 Snyder DL, Sullivan N, Margolis DJ, Schoelles K. Skin substitutes for treating chronic  
 32 wounds. Technology Assessment Program Project ID No. WNDT0818. (Prepared by  
 33 the ECRI Institute-Penn Medicine Evidence-based Practice Center under Contract No.  
 34 HHS-A-290-2015-00005-I) Rockville, MD: Agency for Healthcare Research and  
 35 Quality. February 2020

36

37 Stanley AC, Lounsbury KM, Corrow K, et al. "Pressure elevation slows the fibroblast  
 38 response to wound healing". (2005). *J. Vasc. Surg.* 42 (3): 546–51

39

40 Stoekenbroek RM, Santema TB, Legemate DA, Ubbink DT, van den Brink A, Koelemay  
 41 MJ. Hyperbaric oxygen for the treatment of diabetic foot ulcers: a systematic review.  
 42 *Eur J Vasc Endovasc Surg*. 2014 Jun;47(6):647-55

1 Sussman C, Bates-Jensen BM. Wound Care: A Collaborative Practice Manual for Health  
2 Professionals (4th ed.). Gaithersburg, Maryland: Aspen Publishers, 2011  
3

4 Sussman C, Bates-Jensen BM Wound Care: A Collaborative Practice Manual for Physical  
5 Therapists and Nurses (2d ed.). Gaithersburg, Maryland: Aspen Publishers, 2001  
6

7 Sutton E, Ganie S, Chan C, Kaur A, Nussbaum E. Photobiomodulation and diabetic foot  
8 and lower leg ulcer healing: A narrative synthesis. Foot (Edinb). 2021;48:101847  
9

10 Swanson, T., Asimus, M., & McGuiness, B. (2014). *Wound Management for the Advanced*  
11 *Practitioner*: IP Communications Pty, Limited  
12

13 Taradaj J, Franek A, Blaszcak E, Polak A, Chmielewska D, Krol P, Dolibog P. Using  
14 Physical Modalities in the Treatment of Venous Leg Ulcers: A 14-year Comparative  
15 Clinical Study. Wounds. 2012 Aug;24(8):215-26  
16

17 Thomas, DR. Pressure ulcers. In: Rakel RE, Bope ET, editors Conn's Current Therapy, 1st  
18 ed. Philadelphia, PA: WB Saunders;2011. Section 13  
19

20 Tricco AC, Antony J, Vafaei A, et al. Seeking effective interventions to treat complex  
21 wounds: An overview of systematic reviews. BMC Med. 2015;13:89  
22

23 U.S. Food and Drug Administration (FDA). Guidance for Industry and FDA Staff - Class  
24 II Special Controls Guidance Document: Non-powered Suction Apparatus Device  
25 Intended for Negative Pressure Wound Therapy (NPWT). Updated June 2015.  
26 Retrieved on April 29, 2025 from:  
27 <https://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocument/s/ucm233275.htm>  
28

29

30 Vecin NM, Kirsner RS. Skin substitutes as treatment for chronic wounds: current and  
31 future directions. Frontiers in Medicine. 2023;10  
32

33 Wang G, Zheng J, Wu H, Wu Y. Effects of electromagnetic therapy in treating patients  
34 with venous leg ulcers: An overview of systematic reviews. Int Wound J. 2024  
35 Apr;21(4):e14852  
36

37 Webster J, Liu Z, Norman G, Dumville JC, Chiverton L, Scuffham P, Stankiewicz M,  
38 Chaboyer WP. Negative pressure wound therapy for surgical wounds healing by  
39 primary closure. Cochrane Database Syst Rev. 2019 Mar 26;3:CD009261  
40

41 Wheeler PC, Hardwicke HM, Rowley BA. Accelerated healing of skin ulcer by  
42 electrotherapy: preliminary clinical results, South Med J. 1969 Jul;62 (7):795-801

1 White J, Ivins N, Wilkes A, Carolan-Rees G, Harding KG. Non-contact low-frequency  
 2 ultrasound therapy compared with UK standard of care for venous leg ulcers: a single-  
 3 centre, assessor-blinded, randomised controlled trial. *Int Wound J.* 2015 Jan 25  
 4

5 White-Chu EF, Conner-Kerr TA. Overview of guidelines for the prevention and treatment  
 6 of venous leg ulcers: a US perspective. *J Multidiscip Healthc.* 2014;11(7):111-7  
 7

8 Willy C, Voelker HU, Engelhardt M. Literature on the subject of vacuum therapy: review  
 9 and update 2006. *Eur J Trauma Emerg Surg* 2007 Feb;33(1):33-9  
 10

11 Wolcott LE, Wheeler PC, Hardwicke HM, Rowley BA. Accelerated healing of skin ulcers  
 12 by electrotherapy. *South Med J.* 1969;62(7): 795-801  
 13

14 Wu F, Qi Z, Pan B, Tao R. Extracorporeal shock wave therapy (ESWT) favors healing of  
 15 diabetic foot ulcers: A systematic review and meta-analysis. *Diabetes Res Clin Pract.*  
 16 2024;217:111843. doi:10.1016/j.diabres.2024.111843  
 17

18 Wu S, Carter M, Cole W, et al. Best practice for wound repair and regeneration use of  
 19 cellular, acellular and matrix-like products (CAMPs). *J Wound Care.*  
 20 2023;32(Sup4b):S1-s31  
 21

22 Zarei N, Hassanzadeh-Tabrizi SA. Alginate/hyaluronic acid-based systems as a new  
 23 generation of wound dressings: A review. *Int J Biol Macromol.* 2023 Dec 31;253(Pt  
 24 6):127249  
 25

26 Zens Y, Barth M, Bucher HC, Dreck K, Felsch M, Groß W, Jaschinski T, Kölsch H, Kromp  
 27 M, Overesch I, Sauerland S, Gregor S. Negative pressure wound therapy in patients  
 28 with wounds healing by secondary intention: a systematic review and meta-analysis of  
 29 randomised controlled trials. *Syst Rev.* 2020 Oct 10;9(1):238. doi: 10.1186/s13643-  
 30 020-01476-6  
 31

32 Zhang J, Zhao Y, Zhao X, Zhang J, Jing L. Efficacy and safety of red and infrared light in  
 33 the adjunctive treatment on diabetic foot ulcers: A systematic review and meta-  
 34 analysis. *Complement Ther Clin Pract.* 2024;57:101906.  
 35 doi:10.1016/j.ctcp.2024.101906  
 36

37 Zhou Y, Chia HWA, Tang HWK, Lim SYJ, Toh WY, Lim XL, Cheng LJ, Lau Y. Efficacy  
 38 of low-level light therapy for improving healing of diabetic foot ulcers: A systematic  
 39 review and meta-analysis of randomized controlled trials. *Wound Repair Regen.* 2021  
 40 Jan;29(1):34-44